
PNNL-XXXXX

Biocellion 1.1 User Manual

Seunghwa Kang and Simon Kahan

March 31, 2014

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

United States Government. Neither the United States Government nor any
agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or other-
wise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or Battelle
Memorial Institute. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RLO1830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.
(9/2003)

Acknowledgments

Support for this research was provided by the Extreme Scale Computing Initiative and the Funda-
mental and Computational Sciences Directorate, as part of the Laboratory Directed Research and
Development Program at Pacific Northwest National Laboratory (PNNL). Portions of this work
were conducted using PNNL Institutional Computing at PNNL. PNNL is operated by Battelle for
DOE under contract DE-ACO5-76RLO 1830.

iii

Changes

Changes From Version 1.0

• Modify the Biocellion API related to file output.
– Added the updateFileOutputInfo (Section 4.2.12) model routine and the FileOutputInfo

class (Section 2.4.15).

– Removed the fileOutput member variable from the GridPhiInfo class (Section 2.4.9).
updateFileOutputInfo controls file output for molecular concentrations in the extracel-
lular space.

– Removed num extra from the output element (Section 6.3.1). updateFileOutputInfo
controls file output for particles.

– Added start x, start y, start z, size x, size y, and size z to the output element (Sec-
tion 6.3.1). Users can generate file output data for only a sub-region of the simulation
domain.

• Modify the Biocellion API related to summary output.
– Added the updateSummaryOutputInfo model routine (Section 4.2.13) and the Summa-

ryOutputInfo class (Section 2.4.15).

– Removed the printSummary and summaryType member variables from the GridPhiInfo
and IfGridModelVarInfo classes (Sections 2.4.9 and 2.4.13, respectively). updateSum-
maryOutputInfo controls summary output.

– Added the updateSummaryVar model routine (Section 4.6.2).

• Modify the Biocellion API related to setting options for partial differential equation (PDE)
multigrid and ordinary differential equation (ODE) solvers.

– Added the MGSolveInfo class (Section 2.4.10).

– Added the mgSolveInfo member variable to the PDEInfo class (Section 2.4.12). This
variable controls options for the PDE multigrid solver.

– Added the epsilon and threshold member variables to the ODENetInfo class (Sec-
tion 2.4.4).

– Added the odeEpsilon and odeThreshold member variables to the SplittingInfo class
(Section 2.4.11).

– Removed the mg elliptic, mg parablic, and ode solve elements (Section 6.3.2).

• Modified the syntax of the computeForceSpAgent (Section 4.4.2) and computeExtraMechIn-

v

trctSpAgent (Section 4.4.3) model routines. The grid attributes of the unit boxes containing
an interacting discrete agent pair are passed in addition.

• Modified the syntax of the updatePDEBufferDirichletBCVal (Section 4.5.22) and updatePDE-
BufferNeumannBCVal (Section 4.5.23) model routines. a gridPhi is removed.

• Added the updateFileOutputInfo, updateSummaryOutputInfo, and updateSummaryVar model
routines to Figures 4.1 and 4.2.

• Removed the getMGEllipticNormThreshold and getMGParabolicNormThreshold functions
(Section 3.1).

• Added the getSimInitType function (Section 3.1.9).

• Removed the disappearSpAgent model routine (Section 4.3) and the IfGridUpdate class
(Section 2.4).

• Added getRecentSummaryRealVal and getRecentSummaryIntVal functions (Sections 3.1.5 and 3.1.6,
respectively) to access recent summary output values.

• Replaced minVal in the ODENetInfo and GridPhiInfo classes (Sections 2.4.4 and 2.4.9, re-
spectively) with errorThresholdVal and warningThresholdVal.

vi

Contents

Acknowledgments . iii

Changes . v

1.0 Introduction . 1

1.1 Simulation Components . 2

1.2 Simulation Domain . 5

1.3 Time Step Sizes . 7

1.4 Partial Differential Equation (PDE) Solvers . 7

1.5 Future Roadmap . 8

2.0 Biocellion Data Types . 11

2.1 Basic Data Types . 11

2.2 Extra Scalar Data Types . 11

2.3 Enumerations . 12

2.4 Classes . 15

2.4.1 Vector . 15

2.4.2 VIdx . 15

2.4.3 VReal . 16

2.4.4 ODENetInfo . 17

2.4.5 TimeStepInfo . 17

2.4.6 OptModelRoutineCallInfo . 18

2.4.7 SpAgentInfo . 18

2.4.8 JunctionEndInfo . 19

2.4.9 GridPhiInfo . 19

vii

2.4.10 MGSolveInfo . 20

2.4.11 SplittingInfo . 20

2.4.12 PDEInfo . 21

2.4.13 IfGridModelVarInfo . 22

2.4.14 RNGInfo . 22

2.4.15 FileOutputInfo . 22

2.4.16 SummaryOutputInfo . 23

2.4.17 SpAgentState . 23

2.4.18 JunctionEnd . 24

2.4.19 AgentJunctionInfo . 25

2.4.20 SpAgent . 26

2.4.21 UBAgentData . 27

2.4.22 ExtraMechIntrctData . 27

2.4.23 AgentMechIntrctData . 28

2.4.24 IfGridUpdate . 28

2.4.25 NbrBox . 28

2.4.26 IfGridBoxData . 29

3.0 Biocellion Support Functions . 31

3.1 Simulation Instance Information . 31

3.1.1 getCurBaselineTimeStep . 31

3.1.2 getCurStateAndGridTimeStep . 31

3.1.3 getCurPDETimeStep . 31

3.1.4 getGlobalDataRef . 31

viii

3.1.5 getRecentSummaryRealVal . 31

3.1.6 getRecentSummaryIntVal . 32

3.1.7 getDomainSize . 32

3.1.8 getPartSize . 32

3.1.9 getSimInitType . 32

3.1.10 getParticleNumExtraOutputVars . 32

3.1.11 getModelParam . 32

3.1.12 getAMRRatio . 33

3.2 Random Number Generator . 33

3.2.1 getModelRand . 33

3.3 Extra Support Functions . 33

3.3.1 computeSphereUBVolOvlpRatio . 33

3.3.2 changePosFormat2LvTo1Lv . 34

3.3.3 changePosFormat1LvTo2Lv . 34

3.4 Macros . 34

3.4.1 CHECK . 34

3.4.2 OUTPUT . 34

3.4.3 ERROR . 35

4.0 Biocellion Model Routines . 37

4.1 Model Routine Invocation Timings . 37

4.2 Model Configuration . 38

4.2.1 updateIfGridSpacing . 38

4.2.2 updateOptModelRoutineCallInfo . 38

ix

4.2.3 updateDomainBdryType . 38

4.2.4 updatePDEBufferBdryType . 39

4.2.5 updateTimeStepInfo . 40

4.2.6 updateSyncMethod . 41

4.2.7 updateSpAgentInfo . 41

4.2.8 updateJunctionEndInfo . 41

4.2.9 updatePDEInfo . 41

4.2.10 updateIfGridModelVarInfo . 41

4.2.11 updateRNGInfo . 42

4.2.12 updateFileOutputInfo . 42

4.2.13 updateSummaryOutputInfo . 42

4.2.14 updateGlobalData . 42

4.2.15 init . 42

4.2.16 term . 42

4.2.17 setPDEBuffer . 43

4.2.18 setHabitable . 43

4.3 Individual Agent Behavior . 43

4.3.1 addSpAgents . 43

4.3.2 spAgentCRNODERHS . 43

4.3.3 updateSpAgentState . 44

4.3.4 spAgentSecretionBySpAgent . 44

4.3.5 updateSpAgentBirthDeath . 45

4.3.6 adjustSpAgent . 45

x

4.3.7 divideSpAgent . 45

4.4 Physico-Mechanical Interaction Between Agents 46

4.4.1 initJunctionSpAgent . 46

4.4.2 computeForceSpAgent . 46

4.4.3 computeExtraMechIntrctSpAgent . 47

4.5 State Changes in the Extra-cellular Space . 47

4.5.1 initIfGridVar . 47

4.5.2 updateIfGridVar . 48

4.5.3 updateIfGridKappa . 48

4.5.4 updateIfGridAlpha . 49

4.5.5 updateIfGridBetaInIfRegion . 49

4.5.6 updateIfGridBetaPDEBufferBdry . 49

4.5.7 updateIfGridBetaDomainBdry . 50

4.5.8 updateIfGridRHSLinear . 50

4.5.9 adjustIfGridRHSTimeDependentLinear 50

4.5.10 updateIfGridRHSTimeDependentSplitting 51

4.5.11 updateIfGridAMRTags . 51

4.5.12 updateIfGridDirichletBCVal . 51

4.5.13 updateIfGridNeumannBCVal . 52

4.5.14 initPDEBufferPhi . 52

4.5.15 updatePDEBufferKappa . 52

4.5.16 updatePDEBufferAlpha . 52

4.5.17 updatePDEBufferBetaInPDEBufferRegion 53

xi

4.5.18 updatePDEBufferBetaDomainBdry . 53

4.5.19 updatePDEBufferRHSLinear . 53

4.5.20 adjustPDEBufferRHSTimeDependentLinear 53

4.5.21 updatePDEBufferRHSTimeDependentSplitting 54

4.5.22 updatePDEBufferDirichletBCVal . 54

4.5.23 updatePDEBufferNeumannBCVal . 54

4.6 Simulation Output . 55

4.6.1 updateSpAgentOutput . 55

4.6.2 updateSummaryVar . 55

5.0 Sample Implementations . 57

6.0 Biocellion Installation and Execution . 59

6.1 System Requirements . 59

6.2 Compiling Biocellion . 59

6.2.1 Compiling Model Code . 59

6.2.2 Compiling the Biocellion Core Framework 59

6.3 Simulation Configuration File . 60

6.3.1 Required Elements . 60

6.3.2 Optional Elements . 61

6.4 Execution on Desktop PCs and Workstations 62

6.5 Execution on Clusters . 62

6.6 Execution on Amazon EC2 . 63

6.7 Debugging Support . 63

6.8 Visualization Using Paraview . 63

xii

6.8.1 Visualizing Discrete Agents . 63

6.8.2 Visualizing Molecular Concentrations 64

7.0 Tips and Caveats . 65

8.0 C++ Basics Relevant to Biocellion . 67

9.0 Bibliography . 69

xiii

List of Figures

1.1 Discrete agent shapes. 3

1.2 A junction between two discrete agents. 3

1.3 Uninhabitable region. 4

1.4 Setting partial differential equation (PDE) parameters. 5

1.5 A unit box and its 26 neighboring boxes. 5

1.6 Simulation domain . 6

1.7 Mapping a cell to multiple discrete agents. 8

4.1 Initialization. 38

4.2 Main loop. 39

4.3 Solving a PDE. 40

4.4 Termination. 40

xiv

1.0 Introduction

Many biological phenomena arise as the product of complex interactions in living systems of cells.
These emergent behaviors are evident only once these systems grow to millions to trillions of cells.
Understanding and predicting emergent behaviors is crucial to solving important problems in the
areas of energy (Ha et al. 2011, Majors et al. 2008, Melnicki et al. 2013), environment (Daly 2000,
Singh et al. 2011), and healthcare (Hall-Stoodley et al. 2004, Weinberg 2007, Rubinstein et al.
2013). Computational biologists applying the scientific method iterate using modeling and simu-
lation, refining their models until simulation results match those of experiments. Biocellion pro-
vides the fast simulation of living systems needed to facilitate research into emergent behaviors.

Computer simulation of biological systems requires multiple steps. Computational biologists must
acquire biological knowledge or generate hypotheses on various aspects of biological system be-
haviors; build a mathematical model based on this biological knowledge with detail sufficient to
test their hypotheses; translate the mathematical model into a computer program; run the program
on computers; and visualize and analyze the simulation results.

While an ongoing challenge to this process is to gather and integrate sufficient biological knowl-
edge to build high fidelity models, biologists have been studying the behavior of individual cells
and subcellular organelles for a long time and have accumulated a great amount of knowledge
about how cells and subcellular organelles behave. The most natural way to build mathemati-
cal models based on this accumulated knowledge is to treat each cell (or a subcellular organelle)
as a discrete simulation entity in combination with adoption of high resolution grids to model
the environment. However, simulating these models—often referred to as discrete agent-based
modeling—is considered by some to be computationally intractable for the number of cells needed
to study emergent behaviors of large living systems (Kim et al. 2007, Stamatakos 2010). More
optimistic researchers have envisioned such simulations would be feasible “on a supercomputer
when a proper parallel implementation is used (Jiao and Torquato 2011).”

We side with the latter researchers. Biocellion is a software framework implemented by high-
performance computing (HPC) experts targeting large-scale systems-biology simulations and run-
ning on parallel computers ranging from laptops to supercomputers. Efficient algorithms, careful
performance tuning, and exploitation of parallelism at multiple levels increases computing capabil-
ity well beyond that of general simulation frameworks, enabling simulation of high-fidelity models
at large scale, often several orders of magnitude faster than on other simulation platforms. Biocel-
lion relieves computational biologists of the burdens posed by performance and scalability, freeing
them to focus instead on the modeling task itself.

Biological systems are diverse and highly complex, and there are not yet any standards for math-
ematical modeling flexible enough to express the expansive biological knowledge integrated into
component models. Mathematical models depend on the specifics of the biological systems, ques-
tions being answered, required level of accuracy, availability of biological knowledge, and model
developer’s intellectual capability and experience. Software designed for a single mathematical
model will have only a short life span. Each model is unique in its design. While the need for
generality in modeling is therefore paramount, we have noticed that many multicellular system

1

models exhibit similar computational challenges. We have studied a wide range of biological
systems and analyzed numerous biological system models to separate individual model specifics
from common computational challenges. We have abstracted out and integrated into the Biocel-
lion framework what is common to a wide spectrum of life systems, automating for example the
parallel solution of partial differential equations and propagation of physical contact forces; while
also providing developers easy interfaces to express model specifics, such as growth rates and ad-
hesion properties. Biocellion provides model developers with flexibility in expressing model
specifics while relieving them of the burdens of parallel computation and optimization.

Today, modelers express these model specifics as program functions that Biocellion invokes when
it runs. This provides modelers with the flexibility of a general purpose programming language
when expressing model specifics without significant loss in computational efficiency. That is,
model developers express model specifics as sequential code (C++ code using only basic C++
features, Section 8 explains C++ concepts relevant to Biocellion). The Biocellion core frame-
work links to this C++ model library at runtime, invoking functions as needed to integrate
the model specifics. Realizing that most computational biologists are not C++ experts, we en-
vision adding a productivity layer on top of the current version of Biocellion once mathematical
modeling of biological systems matures sufficiently. Other possibilities are enabling modelers
to use other languages (eg, Python) with which they may be more comfortable, at some cost to
performance but no loss in scalability.

1.1 Simulation Components

Biocellion simulates biological systems with a large number of cells, capturing individual cell
behaviors, interactions between cells, and interactions of cells with their biotic and abiotic
environment.

The current version of Biocellion maps each cell to a discrete agent. In future versions, Biocellion
will allow users to map a cell to multiple discrete agents as illustrated in (Newman 2005, Sander-
sius et al. 2011). Discrete agents can also represent other non-cellular biological elements—e.g.
Xavier et al. represent extra-cellular matrix using discrete agents in (Xavier et al. 2005). Each
discrete agent has associated variables representing its position and state. Biocellion users set the
number of discrete agent types and the number of discrete agent state variables (or attributes) for
each discrete agent type. Each agent can be placed anywhere in the simulation domain (unless
restricted by the mathematical model) to within the limits of floating point precision. Individ-
ual agents move, divide, disappear, and secrete new discrete agents. Biocellion considers each
discrete agent as a sphere by default and each discrete agent has radius as a state variable. Op-
tionally, attributes may be added to a discrete agent to define a non-spherical shape. Figure 1.1
provides an example. Four attributes (three for direction and one for height) are added to treat a
discrete agent as a cylinder. The Biocellion core framework does not use radius or other discrete
agent state variables internally to update the state of a simulated biological system.

Discrete agents may interact with each other directly and indirectly. Direct interaction includes
short-range physico-mechanical interaction between neighboring discrete agents such as cell-cell
adhesion and shoving; or immune cells engulfing other discrete agents (phagocytosis). We assume
the radius of direct interaction is relatively short (e.g. within a small multiple of cell diameter).

2

radius=r

radius=r
height=h

direction=(dx, dy, dz)

(dx, dy, dz)

r

r

h

Figure 1.1. Discrete agent shapes.

Indirect interactions result from the secretion of diffusible molecules and cells uptaking the se-
creted diffusible molecules. Cell surface molecules (receptors) also bind to signaling molecules
secreted by other cells.

Biocellion users set the maximum direct physico-mechanical interaction distance for each discrete
agent type. The maximum interaction distance between two discrete agents with different types is
computed by averaging the two maximum direct interaction distances for the two types. Biocel-
lion invokes model routines that evaluate physico-mechanical interaction between a cell pair only
for discrete agent pairs within the maximum direct interaction distance.

Physico-mechanical interactions between cell pairs often depend on past interactions. Once two
cells form an adherens junction, pulling two cells apart requires stronger force. Biocellion users
can explicitly form and break a junction between a pair of neighboring discrete agents (Figure 1.2).
Each discrete agent has a set of junction ends (one for each junction), and each junction end has
associated state variables. Biocellion asks users to set the number of junction end types and the
number of attributes (or state variables) for each junction end type. Every junction automatically
breaks if the distance between a pair of discrete agents exceeds the user provided maximum direct
interaction distance for the pair.

Junction

Junction
End

Junction
End

Figure 1.2. A junction between two discrete agents.

Each discrete agent has a set of variables storing its temporary mechanical interaction state (one

3

default variable is force, users can add extra variables based on model requirements). Temporary
mechanical interaction state variables are valid within a single baseline time step (time steps are
explained in Section 1.3). Temporary mechanical interaction state variables are updated while
evaluating physico-mechanical interactions between discrete agent pairs. These variables are used
to set discrete agent displacement and to update agent state based on model specific rules.

The surrounding environment influences biological system behavior. The surrounding environ-
ment affects the transport of molecules in the extra-cellular space and promotes and limits cell
movement (e.g. chemotaxis, cells moving towards either the upward of downward gradient of
molecular concentrations, promotes cell movement, and soil aggregate structure constrains cell
movement paths (Resat et al. 2011)).

Biocellion provides two different mechanisms to update environment state variables (e.g. molecu-
lar concentrations or other extra-cellular space attributes). One is editing state variables by model
specific rules and the other is by solving partial differential equations (PDEs). Biocellion users
also mark sub-regions of the simulation domain as uninhabitable, and discrete agents cannot pen-
etrate into an uninhabitable region (Figure 1.3).

Inhabitable
Region

Displacement set inside the
model routine

Actual
displacement

Figure 1.3. A discrete agent cannot move into an uninhabitable region. Biocellion considers
only the position of a discrete agent in computing the displacement and does not
internally use other discrete agent attributes (e.g. radius). By default, Biocellion al-
lows any discrete agent of non-zero volume to overlap uninhabitable regions. If this
is undesirable, the modeler can include code to test the agent’s physical position and
orientation, adjusting the displacement so as to move the agent fully out of uninhab-
itable regions.

Biocellion has three main computational modules to simulate the above simulation components.
The three modules 1) update the state of individual agents, 2) simulate short-range physico-
mechanical interactions, and 3) update the state of the extracellular environment. Computa-
tional modules communicate with other modules to simulate biological systems in their entirety.

4

1.2 Simulation Domain

Biocellion supports a three-dimensional rectangular simulation domain. Biocellion assumes a
rectangular grid (the interface grid) with a fixed grid spacing (the interface grid spacing). The
interface grid spacing defines the resolution of extra-cellular space. Biocellion users set the
interface grid spacing, h. Different computational modules communicate through this interface
grid (See Figures 1.4 and 1.5). For each grid aligned h× h× h-box (unit box) Biocellion main-
tains a list of agents located within the box. The interface grid spacing should be equal to or
larger than the maximum direct physico-mechanical interaction distance between any two
discrete agents. This assures that a discrete agent directly interacts only with discrete agents in
the same box or the neighboring 26 boxes.

𝑑𝑋

𝑑𝑡
= 𝛻 ∙ (𝛽 𝑥, 𝑦, 𝑧 𝛻𝑋 + 𝛼 𝑥, 𝑦, 𝑧 𝑋 + 𝑠(𝑥, 𝑦, 𝑧)

𝛽 𝑥, 𝑦, 𝑧
 𝛼 𝑥, 𝑦, 𝑧 ,

𝑠(𝑥, 𝑦, 𝑧)

h =
interface

grid
spacing

Figure 1.4. Biocellion asks users to set partial differential equation (PDE) parameters at the gran-
ularity of a unit box. For reaction-diffusion PDEs, users set the decay rate (α) and
the source term (s) for every unit box and the diffusion coefficient (β) for every face
between two adjacent unit boxes sharing a face. User provided model routines set
PDE parameters for a unit box based on the state of the unit box and the states of the
discrete agents located in the unit box. For PDE parameters set for the face between
two adjacent unit boxes, model routines set the parameters based on the states of the
two adjacent unit boxes and the states of the discrete agents residing in the two boxes.

Figure 1.5. A model routine updating the state of a discrete agent can access the state of the unit
box the agent belongs to (red) and its 26 neighboring unit boxes (white).

5

Biocellion allows users to set sub-regions of the simulation domain as a partial differential equation
(PDE) buffer; the PDE buffer is relevant only when solving PDEs. No discrete agent is allowed
to reside in the PDE buffer. Say we are simulating a yeast colony growing on top of a thick
agarose cylinder. The agarose cylinder holds nutrients and other molecules secreted by yeast cells.
The agarose cylinder region needs to be included in simulation to track molecular concentration
changes in the extra-cellular space with high accuracy. However, if no cells reside in the agarose
cylinder region, maintaining data structures for all three computational modules at the resolution
of the interface grid spacing can waste a significant amount of computing and memory. Users can
set sub-regions of the simulation domain as a PDE buffer and adopt a coarser grid spacing for the
buffer—Biocellion supports adaptive mesh refinement (AMR, Section 1.4) and the PDE buffer grid
spacing will be matched to the coarsest AMR level grid spacing. Figure 1.6 provides an example.

Interface
Grid

PDE Buffer
Grid

Interface
Grid

Spacing

PDE
Buffer
Grid

Spacing

Figure 1.6. Simulation domain

The simulation domain is decomposed into multiple partitions, multiple compute processes on a
cluster computer work on different sets of partitions. Note that a single multithreaded compute
process can exploit multiple cores on a compute node to work on a single partition. Biocellion
users set the partition size. Biocellion outputs simulation results for different partitions in differ-
ent files. If Biocellion restarts from checkpoint data, Biocellion reads separate checkpoint files
corresponding to distinct partitions. Users can set each partition as a normal partition or a PDE
buffer partition.

6

1.3 Time Step Sizes

Biocellion has three main computational modules with distinct time steps. Communication inter-
vals also vary for different pairs of computational modules.

The baseline time step is the largest time step used by Biocellion. Biocellion uses this time step
size to simulate direct physico-mechanical interactions between discrete agent pairs and to simulate
discrete agent movement, birth, death, and secretion. The computational module simulating direct
short range interactions communicates with the other two modules once every baseline time step.
Our assumption is that cells move, divide, and die at moderate rates.

Cell state changes affect the secretion and uptake rates of extra-cellular molecules. Molecular
concentration changes in the extra-cellular space drive cell state changes as well. Biocellion al-
lows users to couple these two processes more tightly. Users can split a baseline time step into
one or more state-and-grid time steps. The cell state update module and the extra-cellular space
state update module communicate once every state-and-grid time step.

A single state-and-grid time step can be further partitioned to solve partial differential equations
(PDEs). The next section (Section 1.4) discusses time steps used to solve PDEs in more detail.

1.4 Partial Differential Equation (PDE) Solvers

The current version of Biocellion provides solvers for three different types of PDEs: steady-
state linear reaction-diffusion PDEs, time-dependent linear reaction-diffusion PDEs, and time-
dependent reaction-diffusion PDEs adopting the splitting scheme (Strang 1968) to update the re-
action part. Future releases of Biocellion will support advection-reaction-diffusion PDEs.

Biocellion uses CHOMBO (Colella et al. 2012) as an internal solver for PDEs and uses the Intel
ordinary differential equation (ODE) solver (Intel Corporation 2008) to solve the reaction part
of the splitting PDE. We briefly describe PDE solver features relevant to Biocellion users in this
section and refer readers to (Colella et al. 2012, Intel Corporation 2008) for additional details.

The steady-state PDE and the time-dependent linear PDE update concentrations of a single molec-
ular species. The time-dependent PDE based on the splitting scheme update the concentrations of
one or more molecular species reacting in the extra-cellular space.

Biocellion supports adaptive mesh refinement (AMR) to solve PDEs using CHOMBO (Colella
et al. 2012). The grid spacing used for the interface grid is the finest spacing in the AMR hierarchy.
Users can set the number of AMR levels and select either 2 or 4 as the refinement ratio between
two consecutive levels. Users mark the desired AMR level for each unit box in the interface grid.
The coarsest AMR level is assumed for the PDE buffer. The actual AMR grid may use a finer grid
spacing than the grid spacing specfied by the user for some regions to satisfy necessary conditions
to maintain numerical efficiency (e.g. to limit the number of boxes, because processing a large
number of tiny boxes can be computationally inefficient) and correctness (e.g. see the proper
nesting condition in the CHOMBO manual).

7

A variant of the second order accurate L0 stable Runge-Kutta scheme (see the CHOMBO manual
and the Twizell et al.’s paper (Twizell et al. 1996) for additional details) is used for time stepping.
This often allows Biocellion users to adopt a larger time step size than explicit methods for stiff
PDEs. A single PDE time step can be set to a smaller value than the state-and-grid time step by
partitioning a single state-and-grid time step to a positive integer number of PDE time steps.

To solve the splitting PDE, Biocellion solves ODEs for the reaction part for the duration of a single
PDE time step first and sets the PDE source term based on the changes. Then the resulting linear
reaction-diffusion PDE is solved for one or more diffusion time steps—a single PDE time step can
be further partitioned to multiple diffusion time steps when the splitting scheme is used. Biocellion
uses a variable time step size based on error estimation to solve ODEs (following the scheme used
in the Intel ODE solver), and Biocellion users set the minimum ODE time step size. The single
PDE time step size becomes the maximum time step size to solve ODEs.

1.5 Future Roadmap

Over time, we plan to update Biocellion to accommodate an ever broadening spectrum of biological
system models. In the short term, we plan to extend Biocellion to support mapping a single cell
to multiple discrete agents and to provide advection-reaction-diffusion PDE solvers.

Mapping a cell to more than one discrete agent will allow modeling of cell shapes and mechanical
interactions between cells with higher fidelity. For example, mapping a budding yeast cell to two
discrete agents more realistically reproduces the shape of a real budding yeast cell (Figure 1.7).

Figure 1.7. Modeling budding yeast using two discrete agents per cell. The budding yeast image
(left) is reproduced from http://en.wikipedia.org/wiki/Yeast.

Updating individual cell states is largely a users’ task at this point. Biocellion provides a solver for
deterministic ordinary differential equation (ODE) systems, but there are many other approaches
to modeling cell regulatory networks. We plan to add solvers for widely used regulatory network
modeling approaches (e.g. boolean network, stochastic ODE systems, and hybrids). For a cell
mapped to multiple discrete agents, we can consider each discrete agent as a cell compartment
or a subcellular organelle. Another path to extend Biocellion is to provide solvers to update the
state of subcellular discrete agents or to support modeling of molecular transport across subcellular
compartments.

8

Computing the flow rate of liquid in biological systems with time varying structures (e.g. water
flow in soil aggregate or blood flow in human tissue) is another important computational task
in building high fidelity models. In computing blood flow rate, our current interest is mainly
in tracking long term average flow rate changes in capillaries (which affect the delivery rate of
nutrients and vessel stabilization and regression) to model tissue or vascular tumor growth rather
than modeling short term dynamics (e.g. flow changes within a single heart beat cycle) of blood
flow in arteries which is more relevant in studying cardiovascular disease.

9

2.0 Biocellion Data Types

2.1 Basic Data Types

Biocellion redefines the following basic data types to promote portability(a) across different plat-
forms and to support both single-precision and double-precision floating point arithmetic without
code modification.

• REAL: Either single or double precision floating point number (float or double) based on
compile time setup.

• U8, U16, U32, U64: 8, 16, 32, and 64-bit unsigned integers, respectively.

• S8, S16, S32, S64: 8, 16, 32, and 64-bit signed integers, respectively.

• BOOL: Boolean data type (true or false).

BOOL replaces the C++ bool data type. Biocellion uses BOOL instead of bool to prevent the
C++ standard template library (STL) vector from packing multiple boolean variables (up to 8)
into a single byte. Such packing reduces memory consumption but requires additional bitwise
operations to access and modify vector elements. If vector elements are concurrently updated by
multiple threads, updating two different elements packed into the same byte requires locking (or
using other data synchronization primitives); we expect users to write only sequential code, so
data synchronization is not an issue for Biocellion users, but we define the BOOL type to avoid
additional data type conversion overhead between user routines and the Biocellion framework code.

2.2 Extra Scalar Data Types

Biocellion defines additional scalar data types to maintain portability across different platforms
and save memory.

• agentType t: 16 bit unsigned integer by default. Every agent has an associated type. Bio-
cellion users assign different numbers of model specific REAL type and S32 type variables
(or discrete agent attributes) for different agent types.

• junctionEndType t: 16 bit unsigned integer by default. Every junction end (Section 1.1)
has an associated type. Biocellion users assign different numbers of model specific REAL
type and S32 type variables (or junction end attributes) for different junction end types.

• agentId t: 64 bit signed integer by default. Every discrete agent has a unique ID.

• idx t: 16 bit signed integer by default. Three idx t type variables are used to index a unit
box (the size of a unit box is h×h×h assuming that the grid spacing for the interface grid

(a) The current version of Biocellion runs only on x86 compatible architectures. This may
change in the future.

11

is h).

• ubAgentIdx t: 16 bit unsigned integer by default. This data type is used to access discrete
agents in a single unit box.

We assume that the default sizes of the above data types are large enough for most practical appli-
cations. If this does not hold, users need to redefine the above data types and recompile the entire
Biocellion framework and model libraries. Advanced users can redefine the above data types to a
smaller integer data type to save memory if the smaller data type is sufficient for their applications.

2.3 Enumerations

Biocellion has multiple enumerated data types which are used to provide model specifics (see
Section 4 for the user interface to provide model specifics).

• domain bdry type e: Used to set the simulation domain boundary types in the x, y, and z
directions.

– DOMAIN BDRY TYPE NONPERIODIC HARD WALL: Non-periodic boundary condi-
tion is assumed. In solving PDEs, users can apply either Dirichlet or Neumann bound-
ary conditions (for the low and high sides). Discrete agents cannot pass the domain
boundary.

– DOMAIN BDRY TYPE PERIODIC: Periodic boundary condition is assumed for PDEs.
Discrete agents passing the domain boundary will appear at the other end of the simu-
lation domain.

• pde buffer bdry type e: Used to set the boundary type between an interface grid region
and a PDE buffer region. This boundary type is only related to discrete agent movement
and irrelevant to PDE solves.

– PDE BUFFER BDRY TYPE HARD WALL: This is the only valid option at this point.
Discrete agents cannot penetrate into a PDE buffer region (PDE buffer regions are
automatically marked as uninhabitable).

• pde type e: Used to set PDE types.
– PDE TYPE REACTION DIFFUSION STEADY STATE LINEAR: Used to find a (quasi)

steady state solution of a reaction-diffusion linear PDE. This option assumes that the
PDE reaches steady state within a single state-and-grid time step.

– PDE TYPE REACTION DIFFUSION TIME DEPENDENT LINEAR: Use time-stepping
to find a solution of a reaction-diffusion linear PDE.

– PDE TYPE REACTION DIFFUSION TIME DEPENDENT SPLITTING: Use time-
stepping to find a solution of a reaction-diffusion PDE. The time splitting technique (Strang
1968) is applied to simulate reactions among multiple molecular species in the extra-
cellular space.

12

– PDE TYPE ADVECTION REACTION DIFFUSION TIME DEPENDENT LINEAR: Re-
served for future use.

– PDE TYPE ADVECTION REACTION DIFFUSION TIME DEPENDENT SPLITTING:
Reserved for future use.

• bc type e: Used to set PDE boundary condition types.
– BC TYPE DIRICHLET CONST: Apply Dirichlet boundary condition with a constant

boundary value for the entire region of the domain boundary face at the low or high
side in the x, y, or z direction.

– BC TYPE DIRICHLET MODEL: Apply Dirichlet boundary condition, and boundary
values are set in the granularity of a boundary grid unit box face.

– BC TYPE NEUMANN CONST: Apply Neumann boundary condition with a constant
boundary value for the entire region of the domain boundary face at the low or high
side in the x, y, or z direction.

– BC TYPE NEUMANN MODEL: Apply Neumann boundary condition, and boundary val-
ues are set in the granularity of a boundary grid unit box face.

• ode stiff e: Inform the stiffness of the ODE system to solve. Biocellion uses different
mathematical algorithms based on the provided information using the Intel ODE solver (Intel
Corporation 2008).

– ODE STIFF NORMAL: Indicate that the ODE system has low or medium stiffness.
The dodesol rkm9st function in the Intel ODE library (which is “based on the
fourth order Merson’s method and the first order multistage method of up to and in-
cluding 9 stages with stability control (Intel Corporation 2008)”) is used to solve the
ODE system.

– ODE STIFF HIGH: Indicate that the ODE system is stiff. The dodesol mk52lfn
function in the Intel ODE library (which uses “the implicit method based on L-stable(5,2)-
method with the numerical Jacobi matrix, which is computed by the routine (Intel Cor-
poration 2008)”) is used to solve the ODE system.

• sync method e: Biocellion users can update temporary mechanical interaction state vari-
ables of a discrete agent in multiple function calls evaluating direct interactions between the
discrete agent and the neighboring discrete agents—one function call per pair of discrete
agents. Biocellion provides a model routine to edit grid state variables using model specific
rules, and the routine is called once per unit box in the interface grid. A single invocation
of the model routine can update variables associated with an interface grid unit box and
its neighboring 26 unit boxes. A single variable can be updated by multiple model rou-
tine calls. This requires a mechanism to coordinate the multiple updates (often referred as
data synchronization). sync method e is used to set the coordination method when a single
variable is updated in multiple function calls.

– SYNC METHOD OVERWRITE: If this option is selected, only one of the multiple up-

13

dates is reflected—e.g. if three different model routines set the value of variable a to
3, 5, and 9, respectively, a is set to either 3, 5, or 9 with equal probability.

– SYNC METHOD DELTA: If this option is selected, the differences from the initial value
are summed—e.g. if three different model routines set the value of variable a to 3, 5,
and 9, respectively, then a is set to 3 + 5 + 9 (assuming that the initial value is 0).

– SYNC METHOD TRANSACTIONAL: Reserved for future use.

• if grid var type e: Used to set the type of a variable associated with a unit box in the
interface grid.

– IF GRID VAR TYPE PHI: Set the type to a REAL variable storing molecular con-
centration which is mainly updated by solving PDEs. Biocellion updates variables of
this type both when solving PDEs and when inside the model routine updating grid
state variables based on model specific rules. Model specific REAL and S32 variables
are updated only inside the model routine updating grid state variables.

– IF GRID VAR TYPE MODEL REAL: Set the type to a model specific REAL variable.

– IF GRID VAR TYPE MODEL INT: Set the type to a model specific S32 variable.

• sim init type e: Used to set the simulation initialization method.
– SIM INIT TYPE CODE: Initialize inside the model routines.

– SIM INIT TYPE BINARY: Initialize using checkpoint data.

• particle output type e: Used to set the output file format for discrete agents.
– PARTICLE OUTPUT TYPE PTVU: Set the output file format to the Paraview VTK

partitioned unstructured grid file format (.ptvu). This is the only valid option at this
point.

• grid output type e: Used to set the output file format for grid values.
– GRID OUTPUT TYPE VTM: Set the output file format to the VTK hierarchical box

data files format (.vtm). This is the only valid option at this point.

• summary type e: Biocellion supports a summary (reduction) mechanism for interface grid
variables. Users add a fixed number of grid state variables to every unit box in the interface
grid (or assign a fixed number of attributes to the interface grid), and for each attribute, users
can ask Biocellion to visit every unit box to reduce the variables for the attribute to a single
value. summary type e is used to set the reduction method.

– SUMMARY TYPE SUM: Set to print the sum of the interface grid variables.

– SUMMARY TYPE AVG: Set to print the average of the interface grid variables.

– SUMMARY TYPE MIN: Set to print the minimum value of the interface grid variables.

14

– SUMMARY TYPE MAX: Set to print the maximum value of the interface grid variables.

• rng type e: Biocellion provides random number generators—internally using Intel math
kernel library (MKL). rng type e is used to set the random number generator type.

– RNG TYPE UNIFORM: Set the random number generator to generate random numbers
with the uniform distribution.

– RNG TYPE GAUSSIAN: Set the random number generator to generate random num-
bers with the Gaussian distribution.

– RNG TYPE EXPONENTIAL: Set the random number generator to generate random
numbers with the exponential distribution.

– RNG TYPE GAMMA: Set the random number generator to generate random numbers
with the gamma distribution.

2.4 Classes

2.4.1 Vector

Vector is a wrapper class of the C++ standard template library (STL) vector—STL vector is a data
type for a variable size array. We create this wrapper to perform array index bound checks (sim-
ilar to CHOMBO (Colella et al. 2012)) without re-compiling both the Biocellion core framework
and a model library. Users can enable the boundary check for a model library without enabling the
check for the core framework. Visit http://www.cplusplus.com/reference/vector/
vector for additional details about STL vector.

2.4.2 VIdx

VIdx is used to index a grid box in the simulation domain. VIdx has an internal array of three
idx t type variables.

Public static member variables

• VIdx ZERO: A constant three dimensional zero vector—i.e. (0, 0, 0).

• VIdx UNIT: A constant three dimensional unit vector—i.e. (1, 1, 1).

• VIdx A BASIS[3]: A set of three dimensional basis vectors. A BASIS[0] = (1, 0, 0),
A BASIS[1] = (0, 1, 0), and A BASIS[2] = (0, 0, 1).

Public non-static member functions

• +, −, ×, /: Arithmetic operators.

• ==, ! =, <, <=, >, >=: Comparison operators.

15

• [idx]: An access operator—returns the idxth element of the internal array holding three idx t
type variables. idx should be 0, 1, or 2.

Public static member functions

• S64 getIdx3Dto1D(const VIdx& vIdx, const VIdx& regionSize): Re-
turn vIdx[0] × regionSize[1] × regionSize[2] + vIdx[1] × regionSize[2] + vIdx[2].

• S64 getIdx3Dto1D(const VIdx& vIdx, const idx t size): Return vIdx[0]
× size × size + vIdx[1] × size + vIdx[2].

• S64 getIdx3DTo1D(const idx t i, const idx t j, const idx t k, const
VIdx& regionSize): Return i × regionSize[1] × regionSize[2] + j × regionSize[2]
+ k.

• S64 getIdx3DTo1D(const idx t i, const idx t j, const idx t k, const
idx t size): Return i × size × size + j × size + k.

• VIdx getIdx1DTo3D(const S64 idx, const VIdx& regionSize): Per-
form the reverse operation of getIdx3DTo1D(const VIdx& vIdx, const VIdx& regionSize).

• VIdx getIdx1DTo3D(const S64 idx, const idx t size): Perform the
reverse operation of getIdx3DTo1D(const VIdx& vIdx, const idx t size).

2.4.3 VReal

VReal is a container for three REAL type variables.

Public static member variables

• VReal ZERO: A constant three dimensional zero vector—i.e. (0.0, 0.0, 0.0).

• VReal UNIT: A constant three dimensional unit vector—i.e. (1.0, 1.0, 1.0).

• VReal A BASIS[3]: A set of three dimensional basis vectors. A BASIS[0] = (1.0, 0.0,
0.0), A BASIS[1] = (0.0, 1.0, 0.0), and A BASIS[2] = (0.0, 0.0, 1.0).

Public non-static member functions

• +, −, ×, /: Arithmetic operators.

• [idx]: An access operator—returns the idxth element of the internal array holding three
REAL type variables. idx should be 0, 1, or 2.

16

2.4.4 ODENetInfo

This class instance holds the information required to set-up a solver for a deterministic ordinary
different equation (ODE) system to model a discrete agent regulatory network.

Public non-static member variables

• S32 numVars: Set the number of variables in the ODE system.

• ode stiff e stiff : Set the stiffness of the ODE system (Biocellion uses different numerical
algorithms based on this information).

• REAL h: Set the initial step size to h × state-and-grid time step size. 0.0 < h≤ 1.0.

• REAL hm: Set the minimum time step size to hm × state-and-grid time step size. 0.0 <
hm≤ h.

• REAL epsilon: Set the relative error tolerance. The ODE solver cannot ensure required
accuracy if epsilon is smaller than 1e-9.

• REAL threshold: If the absolute value of the solution is larger than threshold, relative error
is controlled. Otherwise, absolute error (threshold × epsilon) is controlled.

• REAL errorThresholdVal: If any of the ODE system variables becomes smaller than er-
rorThresholdVal, Biocellion prints an error message and aborts the program execution. er-
rorThresholdVal should be equal to or smaller than 0.0. Set errorThresholdVal to REAL -
MAX (defined in $BIOCELLION ROOT/include/base type.h) × -1.0 to turn this
check off.

• REAL warningThresholdVal: If any of the ODE system variables becomes smaller than
warningThresholdVal (but still no variable is smaller than errorThresholdVal), Biocellion
prints a warning message (but does not abort the program execution). warningThresholdVal
should be equal to or smaller than 0.0 and should be equal to or larger than errorThreshold-
Val. Set warningThresholdVal to REAL MAX (defined in $BIOCELLION ROOT/inclu
de/base type.h) × -1.0 to turn this check off.

• BOOL setNegToZero: If setNegToZero is set to true, Biocellion automatically resets nega-
tive ODE variables (equal to or larger than errorThresholdVal) to 0.0. Set to false to turn
this feature off.

2.4.5 TimeStepInfo

This class instance holds the information required to set the sizes of baseline time step and state-
and-grid time step.

Public non-static member variables

17

• REAL durationBaselineTimeStep: Set the size of baseline time step.

• S32 numStateAndGridTimeStepsPerBaseline: The state-and-grid time step size is set to
baseline time step size divided by numStateAndGridTimeStepsPerBaseline.

2.4.6 OptModelRoutineCallInfo

Biocellion users can update the interface grid state variables based on model specific rules. Bio-
cellion optionally invokes the model routine updating interface gird state variables at the beginning
and at the end of every state-and-grid time step. This class instance controls the optional model
routine invocation.

Public non-static member variables

• S32 numUpdateIfGridVarPreStateAndGridStepRounds: Call the model routine (once for
every unit box in the interface grid) for numUpdateIfGridVarPreStateAndGridStepRounds
rounds at the beginning of every state-and-grid time step. This variable should be zero or a
positive integer.

• S32 numUpdateIfGridVarPostStateAndGridStepRounds: Call the model routine (once for
every unit box in the interface grid) for numUpdateIfGridVarPostStateAndGridStepRounds
rounds at the end of every state-and-grid time step. This variable should be zero or a posi-
tive integer.

2.4.7 SpAgentInfo

This class instance holds the model specifics about a discrete agent type.

Public non-static member variables

• REAL dMax: Set the maximum direct physico-mechanical interaction distance. The value
of this variable should be equal to or smaller than the interface grid spacing. The maximum
direct interaction distance between two discrete agents having different types is computed
by averaging the dMax values for the two types. In computing direct interactions between
discrete agent pairs, every pair within the maximum interaction distance is enumerated.

• S32 numStateModelReals: Set the number of model specific REAL type state variables for
this discrete agent type.

• S32 numStateModelInts: Set the number of model specific S32 type state variables for this
discrete agent type.

• S32 numExtraMechIntrctModelReals: Set the number of model specific REAL type tem-
porary mechanical interaction state variables for this discrete agent type.

• S32 numExtraMechIntrctModelInts: Set the number of model specific S32 type temporary

18

mechanical interaction state variables for this discrete agent type.

2.4.8 JunctionEndInfo

This class instance holds the model specifics about a junction end type.

Public non-static member variables

• S32 numModelReals: Set the number of model specific REAL type variables for this junc-
tion end type.

• S32 numModelInts: Set the number of model specific S32 type variables for this junction
end type.

2.4.9 GridPhiInfo

This class instance holds the model specifics about the concentration values of a molecular species
which are mainly updated by solving PDEs.

Public non-static member variables

• S32 elemIdx: Set the unique index for this molecular species. elemIdx should be equal to
or larger than 0 and smaller than the number of molecular species in the simulation instance.

• std::string name: Set the name of the molecular species.

• bc tyep e aa bcType[3][2]: Boundary condition types for the x (aa bcType[0][]), y(aa -
bcType[1][]), and z(aa bcType[2][]) directions and the low (aa bcType[][0]) and high (aa -
bcType[][1]) sides. Irrelevant if periodic boundary condition is applied.

• REAL aa bcVal[3][2]: Set the constant boundary value for the low and high sides in the
x, y, and z directions. Relevant only when the PDE boundary type is set to BC TYPE -
DIRCHLET CONST or BC TYPE NEUMANN CONST.

• REAL errorThresholdVal: If any of the PDE variables becomes smaller than errorThresh-
oldVal, Biocellion prints an error message and aborts the program execution. errorThresh-
oldVal should be equal to or smaller than 0.0. Set errorThresholdVal to REAL MAX (de-
fined in $BIOCELLION ROOT/include/base type.h) × -1.0 to turn this check off.

• REAL warningThresholdVal: If any of the PDE variables becomes smaller than warningTh-
resholdVal (but still no variable is smaller than errorThresholdVal), Biocellion prints a warn-
ing message (but does not abort the program execution). warningThresholdVal should be
equal to or smaller than 0.0 and should be equal to or larger than errorThresholdVal. Set
warningThresholdVal to REAL MAX (defined in $BIOCELLION ROOT/include/bas
e type.h) × -1.0 to turn this check off.

19

• BOOL setNegToZero: If setNegToZero is set to true, Biocellion automatically resets nega-
tive PDE variables (equal to or larger than errorThresholdVal) to 0.0. Set to false to turn
this feature off.

2.4.10 MGSolveInfo

This class instance holds the model specifics about the PDE multigrid solver.

Public non-static member variables

• S32 numPre: Set the number of smoothing steps before averaging in the multigrid solver.
Set to 3 unless you wish to tune the multgrid solver based on your specific PDE problems.

• S32 numPre: Set the number of smoothing steps after averaging in the multigrid solver.
Set to 3 unless you wish to tune the multgrid solver based on your specific PDE problems.

• S32 numBottom: Set the number of smoothing steps at the bottom level. Set to 3 unless
you wish to tune the multgrid solver based on your specific PDE problems.

• BOOL vCycle: Set to true to use V-cycle or set to false to use W-cycle in the multigrid
solver. Set to true unless you wish to tune the multgrid solver based on your specific PDE
problems.

• S32 maxIters: Set the maximum number of V-cycles (or W-cycles). Se to 30 unless you
wish to tune the multigrid solver based on your specific PDE problems (e.g. if your PDE
converges very slowly, a larger value could be more appropriate). If the PDE multigrid
solver does not reach convergence within maxIters iterations, the solver exits prematurely
and prints a warning.

• REAL epsilon: The PDE multigrid solver assumes solution convergence if the residual
norm is equal to or smaller than the original norm multiplied by epsilon.

• REAL hang: Set the minimum required change in two consecutive V-cycles (or W-cycles).
If the decrease in the norm (relative to the norm in the previous iteration) is less than hang,
the PDE multigrid solver exits prematurely and prints a warning.

• REAL normThreshold: The PDE multigrid solver assumes solution convergence if the
residual norm is equal to or smaller than normThreshold.

2.4.11 SplittingInfo

This class instance holds the information required to solve a PDE using the splitting scheme. A
PDE can have multiple molecular species if the splitting scheme is used.

Public non-static member variables

20

• Vector<S32> v diffusionTimeSteps: Set the number of diffusion time step per PDE time
step for each molecular species in the PDE.

• ode stiff e odeStiff : Set the stiffness of the ODE system for the PDE reaction part (Biocel-
lion uses different numerical algorithms based on this information).

• REAL odeH: Set the initial ODE time step size to odeH × PDE time step size. 0.0 <
odeH ≤ 1.0.

• REAL odeHm: Set the minimum ODE time step size to odeHm × PDE time step size.
0.0 < odeHm≤ odeH.

• REAL odeEpsilon: Set the relative error tolerance. The ODE solver cannot ensure re-
quired accuracy if epsilon is smaller than 1e-9.

• REAL odeThreshold: If the absolute value of the solution is larger than threshold, relative
error is controlled. Otherwise, absolute error (threshold × epsilon) is controlled.

2.4.12 PDEInfo

This class instance holds the information required to solve a PDE.

Public non-static member variables

• pde type e pdeType: Set the type of the PDE.

• S32 numLevels: Set the number of adaptive mesh refinement (AMR) levels.

• S32 numTimeSteps: Set the number of PDE time steps per state-and-grid time step.

• BOOL callAdjustRHSTimeDependentLinear: If set to true, Biocellion invokes the model
routines (adjustIfGridRHSTimeDependentLinear() and adjustPDEBufferRHSTimeDependent-
Linear()) at the beginning of every PDE time step to fine tune the PDE reaction term. If
set to false, Biocellion updates the PDE reaction part only once per state-and-grid time
step. Relevant only when pdeType is set to PDE TYPE REACTION DIFFUSION TIME -
DEPENDENT LINEAR.

• MGSolveInfo mgSolveInfo: Set the PDE multigrid solver options. See Section 2.4.10 for
additional details.

• AdvectionInfo advectionInfo: Reserved for future use. Irrelevant at this point.

• SplittingInfo splittingInfo: Set the information required to solve the PDE using the splitting
scheme. Relevant only when pdeType is set to PDE TYPE REACTION DIFFUSION -
TIME DEPENDENT SPLITTING.

21

• Vector<GridPhiInfo> v gridPhiInfo: Provide the information about a molecular species in
this PDE. If the splitting scheme is used, there can be more than one molecular species in a
single PDE.

2.4.13 IfGridModelVarInfo

Biocellion allows users to assign a fixed number of model specific attributes to the interface grid
(or a fixed number of REAL and S32 type state variables to every unit box in the interface grid).
These variables are updated by model specific rules in the model routine called at the beginning
and the end of every state-and-grid time step. This class instance provides the information about
a model specific attribute.

Public non-static member variables

• std::string name: Set the name of the attribute.

2.4.14 RNGInfo

Biocellion provides random number generators with the uniform, Gaussian, exponential, and gamma
distributions. We assume that the probability density functions for the exponential and gamma

distributions are
1
β
× e−x/β and βα× 1

Γ(α)
× xα−1× e−β×x, respectively.

Public non-static member variables

• rng type e type: This variable sets the random number generator type.

• REAL param0: The minimum value if the uniform distribution is selected, the average
value if the Gaussian distribution is selected, β if the exponential distribution is selected, and
α if the gamma distribution is selected.

• REAL param1: The maximum value if the uniform distribution is selected, the standard
deviation value if the Gaussian distribution is selected, the displacement value if the expo-
nential distribution is selected, and β if the gamma distribution is selected.

• REAL param2: Relevant only when the gamma distribution is selected. The displacement
value for the gamma distribution.

2.4.15 FileOutputInfo

This class instance holds the information related to file output of simulation results.

Public non-static member variables

• BOOL particleOutput: If set to true, Biocellion generates output files for discrete agent
data.

22

• S32 particleNumExtraOutputVars: This variable sets the number of extra output variables
(in addition to the default radius and color variables) for particles representing discrete
agents.

• Vector<BOOL> v gridPhiOutput: Set to true to generate output files for each molecular
species in the PDE.

• Vector<BOOL> v gridPhiOutputDivideByKappa: Set to true to output molecular concen-
tration values divided by κ values (Section 4.5.3) for each molecular species in the PDE.

2.4.16 SummaryOutputInfo

This class instance holds the information related to summary output of simulation results.

Public non-static member variables

• Vector<string> v realName: Each vector element sets the name of the corresponding sum-
mary attribute.

• Vector<summary type e> v realType: Each vector element sets the reduction method to
print summary for the corresponding summary attribute.

2.4.17 SpAgentState

This class instance holds variables describing the state of a discrete agent and provides interface
functions to access the variables. The entire set of discrete agent state variables are stored in an
internal linear array. Biocellion does not allow direct access to the array which can be error-prone.

Public non-static member functions

• agentType t getType(void) const: Return the type of the discrete agent.

• void setType(const agentType t type): Set the type of the discrete agent to type. This
function also resizes and resets the internal linear array. Users need to properly initialize
discrete agent state variables after this function is invoked.

• REAL getRadius(void) const: Return the value of the radius variable (a default discrete
agent state variable).

• void setRadius(REAL radius): Set the value of the radius variable (a default discrete agent
state variable) to radius.

• void getODEVal(const S32 odeNetIdx, const S32 varIdx) const: Return the value of the
varIdxth variable in the odeNetIdxth ordinary differential equation (ODE) system. A single
discrete agent can have more than one ODE systems.

23

• Vector<REAL> getODEValArray(const S32 odeNetIdx) const: Return a Vector array hold-
ing the entire set of variable values in the odeNetIdxth ODE system.

• void setODEVal(const S32 odeNetIdx, const S32 varIdx, REAL val): Set the value of the
varIdxth variable in the odeNetIdxth ordinary differential equation (ODE) system to val.

• void setODEValArray(const S32 odeNetIdx, const Vector<REAL>& v val): Set the entire
set of variables in the odeNetIdxth ODE system to v val. v val’s size should coincide with
the number of variables in the ODE system.

• REAL getModelReal(const S32 idx) const: Return the value of the idxth model specific
REAL type variable.

• Vector<REAL> getModelRealArray(void) const: Return a Vector array holding the entire
set of model specific REAL type variable values.

• void setModelReal(const S32 idx, const REAL val): Set the value of the idxth model specific
REAL type variable to val.

• void setModelRealArray(const Vector<REAL>& v val): Set the entire set of model spe-
cific REAL type variables to v val. v val’s size should coincide with the number of model
specific REAL type variables for this discrete agent type.

• void incModelReal(const S32 idx, const REAL inc): Increment the value of the idxth model
specific REAL type variable by inc.

• S32 getModelInt(const S32 idx) const: Return the value of the idxth model specific S32
type variable.

• Vector<S32> getModelIntArray(void) const: Return a Vector array holding the entire set
of model specific S32 type variable values.

• void setModelInt(const S32 idx, const S32 val): Set the value of the idxth model specific
S32 type variable to val.

• void setModelIntArray(const Vector<S32>& v val): Set the entire set of model specific
S32 type variables to v val. v val’s size should coincide with the number of model specific
S32 type variables for this discrete agent type.

• void incModelInt(const S32 idx, const S32 inc): Increment the value of the idxth model
specific S32 type variable by inc.

2.4.18 JunctionEnd

This class instance holds variables describing the state of a junction end and provides interface
functions to access the variables. The entire set of junction end state variables are stored in an

24

internal linear array. Biocellion does not allow direct access to the array which can be error-prone.

Public non-static member functions

• junctionEndType t getType(void) const: Return the type of the junction end.

• void setType(const junctionEndType t type): Set the type of the junction end to type. This
function also resizes and resets the internal linear array. Users need to properly initialize
junction end state variables after this function is invoked.

• REAL getModelReal(const S32 idx) const: Return the value of the idxth model specific
REAL type variable.

• Vector<REAL> getModelRealArray(void) const: Return a Vector array holding the entire
set of model specific REAL type variable values.

• void setModelReal(const S32 idx, const REAL val): Set the value of the idxth model specific
REAL type variable to val.

• void setModelRealArray(const Vector<REAL>& v val): Set the entire set of model spe-
cific REAL type variables to v val. v val’s size should coincide with the number of model
specific REAL type variables for this discrete agent type.

• void incModelReal(const S32 idx, const REAL inc): Increment the value of the idxth model
specific REAL type variable by inc.

• S32 getModelInt(const S32 idx) const: Return the value of the idxth model specific S32
type variable.

• Vector<S32> getModelIntArray(void) const: Return a Vector array holding the entire set
of model specific S32 type variable values.

• void setModelInt(const S32 idx, const S32 val): Set the value of the idxth model specific
S32 type variable to val.

• void setModelIntArray(const Vector<S32>& v val): Set the entire set of model specific
S32 type variables to v val. v val’s size should coincide with the number of model specific
S32 type variables for this discrete agent type.

• void incModelInt(const S32 idx, const S32 inc): Increment the value of the idxth model
specific S32 type variable by inc.

2.4.19 AgentJunctionInfo

This class instance stores a list of junctions belong to this discrete agent and the state variables
of the junction ends. A unique ID is assigned to every discrete agent particle. This ID is mainly

25

used internally, but Biocellion allows users to read the ID if necessary. If an agent is created in the
previous baseline time step, this class instance also holds the ID of the mother agent (getPrevId()
returns the ID of the mother agent). Otherwise, getPrevId() and getCurId() return the same value.

Public non-static member functions

• S64 getPrevId(void) const: Return the ID of the mother agent if this discrete agent is newly
created. Otherwise, this function and getCurId() return the same value.

• S64 getCurId(void) const: Return the ID of this agent.

• S32 getNumJunctions(void) const: Return the number of junctions between this agent and
other neighboring agents.

• S64 getOtherEndId(const S32 idx) const: Return the ID of the discrete agent at the other
end of the idxth junction.

• const JunctionEnd& getJunctionEndRef(const S32 idx) const: Return a constant reference
of the idxth junction’s end at this agent’s side.

• JunctionEnd& getJunctionEndRef(const S32 idx): Return a modifiable reference of the
idxth junction’s end at this agent’s side.

• BOOL isLinked(const AgentJunctionInfo& otherInfo) const: Return true if there is a valid
junction between this agent and another agent assuming that otherInfo is the AgentJunction-
Info type variable of the other discrete agent. Return false if there is no junction between
the two discrete agents.

• BOOL isLinked(const AgentJunctionInfo& otherInfo, S32& idxThis, S32& idxOther) const:
Return true if there is a valid junction between this agent and another agent assuming that
otherInfo is the AgentJunctionInfo type variable of the other discrete agent. Return false
if there is no junction between the two discrete agents. This function returns the indices
to access the junction ends in addition. idxThis holds the index for the junction end at this
discrete agent’s side and idxOther holds the index for the junction end at the other discrete
agent’s side.

2.4.20 SpAgent

This class instance holds the position (offset within the interface grid unit box this agent belongs
to) and the state of a cell (or a non-cellular biological entity) mapped to a single particle.

Public non-static member variables

• SpAgentState state: A variable holding the state of this agent.

• AgentJunctionInfo junctionInfo: A variable holding information about the entire set of

26

junctions between this agent and neighboring agents.

• VReal vOffset: This variable holds the offset of this discrete agent from the center of the
interface grid unit box this discrete agent belongs to.

2.4.21 UBAgentData

This class instance holds a list of discrete agents in an interface grid unit box.

• Vector<SpAgent> v spAgent: A collection of discrete agents in this unit box.

2.4.22 ExtraMechIntrctData

This class instance holds the extra temporary mechanical interaction state variables of a discrete
agent. The entire set of extra temporary mechanical interaction state variables are stored in an
internal linear array. Biocellion does not allow direct access to the array which can be error-prone.

Public non-static member functions

• REAL getModelReal(const S32 idx) const: Return the value of the idxth model specific
REAL type variable.

• Vector<REAL> getModelRealArray(void) const: Return a Vector array holding the entire
set of model specific REAL type variable values.

• void setModelReal(const S32 idx, const REAL val): Set the value of the idxth model specific
REAL type variable to val.

• void setModelRealArray(const Vector<REAL>& v val): Set the entire set of model spe-
cific REAL type variables to v val. v val’s size should coincide with the number of model
specific REAL type variables for this discrete agent type.

• void incModelReal(const S32 idx, const REAL inc): Increment the value of the idxth model
specific REAL type variable by inc.

• S32 getModelInt(const S32 idx) const: Return the value of the idxth model specific S32
type variable.

• Vector<S32> getModelIntArray(void) const: Return a Vector array holding the entire set
of model specific S32 type variable values.

• void setModelInt(const S32 idx, const S32 val): Set the value of the idxth model specific
S32 type variable to val.

• void setModelIntArray(const Vector<S32>& v val): Set the entire set of model specific
S32 type variables to v val. v val’s size should coincide with the number of model specific

27

S32 type variables for this discrete agent type.

• void incModelInt(const S32 idx, const S32 inc): Increment the value of the idxth model
specific S32 type variable by inc.

2.4.23 AgentMechIntrctData

This class instance holds the sum of the forces on this discrete agent (due to direct mechanical
interactions with neighboring discrete agents) and the entire set of extra temporary mechanical in-
teraction state variables.

Public non-static member variables

• VReal force: The sum of the forces on this discrete agent.

• ExtraMechIntrctData extraMechIntrctData: This variable captures the model specific extra
temporary mechanical interaction state.

2.4.24 IfGridUpdate

This class instance holds the information required to update a single state variable of a unit box in
the interface grid.

• if grid var type e type: This variable sets the type of the interface grid state variable to
update.

• S32 elemIdx: This variable sets the index of the interface grid state variable to update.

• union { REAL realVal; S32 intVal; } val: This variable stores the new value of the interface
grid state variable to update.

2.4.25 NbrBox

This template class instance holds a set of 27 variables of type T (type T is given when this class
instance is defined) for an interface grid unit box and its 26 neighboring boxes (one value per box).
These variables are valid only for the boxes in a valid interface region. An offset variable in each
dimension (xOffset, yOffset, zOffset, vOffset[0], vOffset[1], or vOffset[2]) should be -1, 0, or 1.
(xOffset, yOffset, zOffset) (or alternatively (vOffset[0], vOffset[1], vOffset[2])) = (0, 0, 0) indexes
the center box.

• BOOL getValidFlag(const S32 xOffset, const S32 yOffset, const S32 zOffset) const: Return
true if the indexed box is in a valid interface region. Return false if the box is located outside
the simulation domain or in a PDE buffer region.

• BOOL getValidFlag(const VIdx& vOffset) const: Same to the above function. Use vOffset
instead of (xOffset, yOffset, zOffset) to index the unit box.

28

• const T& getVal(const S32 xOffset, const S32 yOffset, const S32 zOffset) const: Return a
constant reference of the value associated with the indexed unit box. This function should
not be invoked for an invalid box.

• const T& getVal(const VIdx& vOffset) const: Same to the above function. Use vOffset
instead of (xOffset, yOffset, zOffset) to index the unit box.

• void setVal(const S32 xOffset, const S32 yOffset, const S32 zOffset, const T val): Set the
variable associated with the indexed unit box to val. This function should not be invoked
for an invalid box.

• void setVal(const VIdx& vOffset, const T val): Same to the above function. Use vOffset
instead of (xOffset, yOffset, zOffset) to index the unit box.

2.4.26 IfGridBoxData

This class instance holds a set of variables for a sub-region of the simulation domain (one value
per one unit box in the partition). This class instance is often used to pass a set of variables for a
single partition or a single partition plus the valid ghost region of the partition(a).

• T get(const VIdx& vIdx) const: Return the value associated with the unit box at vIdx. The
the sub-region for this class instance should include vIdx.

• void set(const VIdx& vIdx, const T val): Set the value associated with the unit box at vIdx
to val. The the sub-region for this class instance should include vIdx.

• VIdx smallEnd(void) const: Return the grid index for the unit box at the low end corner of
the sub-region for this class instance.

• VIdx size(void) const: Return the size of the sub-region for this class instance.

• idx t size(const S32 dim) const: Return the size of the sub-region for this class instance in
either x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction.

(a) The valid ghost region for a partition box can be obtained if we increase the size of the box by
1 in the ± x, y, and z directions (the box size in each direction is increased by 2) and exclude
the unit boxes located in the original box, in the PDE buffer region, and outside the simulation
domain

29

3.0 Biocellion Support Functions

3.1 Simulation Instance Information

3.1.1 getCurBaselineTimeStep

S32 getCurBaselineTimeStep(void)

Return the current baseline time step.

3.1.2 getCurStateAndGridTimeStep

S32 getCurStateAndGridTimeStep(void)

Return the current state-and-grid time step within the current baseline time step.

3.1.3 getCurPDETimeStep

S32 getCurPDETimeStep(const S32 pdeIdx)

Return the current PDE time step of the pdeIdxth PDE within the current state-and-grid time step.

3.1.4 getGlobalDataRef

const Vector<U8>& getGlobalDataRef(void)

Return a constant reference to the user global data. Biocellion invokes the model routine (update-
GlobalData(), see Section 4.2.14) to set the global data (this data can be accessed in any model
routine once the data is set) during the simulation initialization process. This function returns a
constant reference to the data.

3.1.5 getRecentSummaryRealVal

REAL getRecentSummaryRealVal(const S32 elemidx)

Return the most recent value of the elemIdxth REAL type summary variable.

31

3.1.6 getRecentSummaryIntVal

REAL getRecentSummaryIntVal(const S32 elemidx)

Return the most recent value of the elemIdxth S32 type summary variable.

3.1.7 getDomainSize

idx t getDomainSize(const S32 dim)

Return the domain size in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. The domain
size is set inside the simulation configuration file (see Section 6.3).

3.1.8 getPartSize

idx t getPartSize(void)

Return the partition size set inside the simulation configuration file (see Section 6.3).

3.1.9 getSimInitType

sim init type e getSimInitType(void)

Return the simulation initialization type set inside the simulation configuration file (see Sec-
tion 6.3). See the explanation about sim init type e in Section 2.3 for the valid simulation ini-
tialization types.

3.1.10 getParticleNumExtraOutputVars

S32 getParticleNumExtraOutputVars(void)

Return the number of extra output variables (in addition to the default radius and color variables)
for each particle representing a discrete agent. This value is set inside the simulation configuration
file (see Section 6.3).

3.1.11 getModelParam

std::string getModelParam(void)

32

Return the model parameter string set inside the simulation configuration file (see Section 6.3).

3.1.12 getAMRRatio

S32 getAMRRatio(void)

Return the refinement ratio between two consecutive adaptive mesh refinement (AMR) levels.
The refinement ratio is set inside the simulation configuration file (see Section 6.3).

3.2 Random Number Generator

3.2.1 getModelRand

REAL Util::getModelRand(const S32 idx)

Return a random number generated using the idxth random number generator. Biocellion allows
users to assign a set of random number generators with different probability density functions.

3.3 Extra Support Functions

3.3.1 computeSphereUBVolOvlpRatio

void computeSphereUBVolOvlpRatio(const S32 maxLevel, const VReal& vOffset, const REAL ra-
dius, REAL aaa ratio[3][3][3])
REAL computeSphereUBVolOvlpRatio(const S32 maxLevel, const VReal& vOffset, const REAL
radius, const VIdx& ubVIdxOffset)

A discrete agent with a non-zero volume may span multiple unit boxes. Modelers may want to find
the ratios of the overlapping volumes between the agent and different unit boxes over the entire
volume of the agent. These functions find an approximate solution assuming that the discrete
agent is a sphere (vOffset is the offset from the center of the unit box containing the discrete
agent and points the center of the sphere, and radius is the radius of the sphere). The unit box
containing the discrete agent and its 26 neighboring boxes are considered—the radius of a discrete
agent cannot exceed one half of the interface grid spacing and the sphere can overlap with only
these 3× 3× 3 unit boxes. The first function finds the ratios for the entire set of 3× 3× 3 unit
boxes (aaa ratio contains the solution), and the second function returns the ratio for only one of the
3×3×3 unit boxes indexed by ubVIdxOffset. This function partitions the minimum bounding box
of the sphere to 2maxLevel × 2maxLevel × 2maxLevel sub-boxes. We consider that a sub-box belongs
to a unit box if the sub-box center is located inside the sphere and the unit box. If the center is
located exactly at the surface of the sphere, we consider the center is located inside the sphere.
If the center is located exactly at the boundary of two unit boxes, we consider that the center is
located at the unit box with a larger index. These functions compute the ratio by dividing the

33

number of sub-boxes belong to a unit box by the number of sub-boxes belong to the 3× 3× 3
boxes. maxLevel should be a non-negative integer equal to or smaller than 7. A larger value
increases both accuracy and execution time. vOffset cannot point the location outside the unit
box. radius should not exceed one half of the interface grid spacing. ubVIdxOffset[idx] (idx = 0,
1, or 2) should be -1, 0, or 1.

3.3.2 changePosFormat2LvTo1Lv

void changePosFormat2LvTo1Lv(const VIdx& vIdx, const VReal& vOffset, VReal& pos)

Particle position can be represented in a single level (with a single VReal varaible storing the offset
from the low end corner of the simulation domain) or in two levels (with a single VIdx variable
providing the unit box index the particle belongs to and a single VReal variable holding the offset
from the center of the unit box). This functions changes the format from the two level format to
the single level format (the updated position is stored in pos).

3.3.3 changePosFormat1LvTo2Lv

void changePosFormat1LvTo2Lv(const VReal& pos, VIdx& vIdx, VReal& vOffset)

Particle position can be represented in a single level (with a single VReal varaible storing the offset
from the low end corner of the simulation domain) or in two levels (with a single VIdx variable
providing the unit box index the particle belongs to and a single VReal variable holding the offset
from the center of the unit box). This functions changes the format from the single level format
to the two level format (the updated position is stored in vIdx and vOffset).

3.4 Macros

3.4.1 CHECK

CHECK(expression)

Abort if expression is false if this macro is enabled in compile time (Section 6.2.1).

3.4.2 OUTPUT

OUTPUT(minVerbosity, msg)

Print msg to the standard output if the standard output verbosity set inside the simulation configu-
ration file (see Section 6.3) is equal to or larger than minVerbosity.

34

3.4.3 ERROR

ERROR(msg)

Print msg to the standard output and abort the program.

35

4.0 Biocellion Model Routines

Biocellion asks users to provide their model specifics by filling the function body of a set of prede-
fined model routines. Users write only sequential code, but the Biocellion framework can invoke a
single model routine multiple times in parallel. Users are disallowed to use any functions that are
not thread-safe—e.g. the C rand() function is not thread safe, use getModelRand() (Section 3.2.1)
instead.

We also strongly discourage users to access global variables inside a model routine with few ex-
ceptions. Reading constant global variables is acceptable. If global variables are initialized at the
beginning of the simulation in the init() model routine (Section 4.2.15), reading the initialized vari-
ables is also acceptable with one caveat. If multiple MPI processes are created to run Biocellion
on a system with multiple shared memory nodes (e.g. cluster computers and supercomputers),
the init() model routine is called once in every MPI process. Model routines executed in different
MPI processes access different instances of a global variable initialized in different init() invoca-
tions even when the routines access a variable with the same variable name. If users need to set
shared global data across the entire set of MPI processes, update the data using the updateGlob-
alData() model routine (Section 4.2.14) which is invoked exactly once by just one of the MPI
processes (the MPI process having rank 0). The data is copied to the remaining MPI processes
by the Biocellion core framework. The data cannot be modified outside the updateGlobalData()
function, and users can access the data through getGlobalDataRef() (Section 3.1.4).

Section 4.1 summarizes model routine invocation timings, and the remaining of this Section ex-
plains the model routines.

4.1 Model Routine Invocation Timings

Figures 4.1, 4.2, 4.3, and 4.4 summarizes model routine invocation timings for the initialization,
main computation, PDE computation, and termination, respectively. Symbols after model rou-
tine names indicate the model routine invocation granularity. S indicates that the model routine is
called only once per simulation even when there are more than one MPI processes. M indicates
that the model routine is called once per MPI process. If there is only one (multi-threaded) pro-
cess, S and M are identical. P indicates that the model routine is called once per partition. IB
indicates that the model routine is called once per interface grid unit box. IF indicates that the
model routine is called once per relevant unit box face—e.g. updateIfGridBetaDomainBdry() is
called only for the unit box faces at the domain boundary. PB indicates that the model routine is
called once per PDE buffer grid unit box, and PF indicates that the model routine is called once
per relevant PDE buffer grid unit box face. A indicates that the model routine is called once per
discrete agent, and AP indicates that the model routine is called once per discrete agent pair within
the maximum direct interaction distance.

37

Setup global initialization data

Provide model information

Set habitable regions, initialize
agent and grid data

Parse the simulation
configuration file

Set PDE buffer regions

Perform model-specific
initialization

Initialize using
check-point

data

Initialize using check-point data

Read check-point
data

Start initialization

End initialization

Yes No

1. updateIfGridSpacing (S)
2. updateOptModelRoutineCallInfo (S)
3. updatqeDomainBdryType (S)
4. updatePDEBufferBdryType (S)
5. updateTimeStepInfo (S)
6. updateSyncMethod (S)
7. updateSpAgentInfo (S)
8. updateJunctionEndInfo (S)
9. updatePDEInfo (S)
10. updateIfGridModelVarInfo (S)
11. updateRNGInfo (S)
12. updateFileOutputInfo (S)
13. updateSummaryOutputInfo (S)

1. updateGlobalData (S)

1. init (M)

1. setPDEBuffer (P)

1. setHabitable (IB)
2. addSpAgents (P)
3. initJunctionSpAgent (AP)
4. initIfGridVar (IB)
5. initPDEBufferPhi (PB)

Figure 4.1. Initialization.

4.2 Model Configuration

4.2.1 updateIfGridSpacing

void updateIfGridSpacing(REAL& ifGridSpacing)

Set the interface grid spacing. This model routine sets ifGridSpacing to the desired interface grid
spacing.

4.2.2 updateOptModelRoutineCallInfo

void updateOptModelRoutineCallInfo(OptModelRoutineCallInfo& callInfo)

Control the invocation of optional model routines. This model routine updates callInfo. See Sec-
tion 2.4.6 about the OptModelRoutineCallInfo data type.

4.2.3 updateDomainBdryType

void updateDomainBdryType(domain bdry type e a domainBdryType[3])

Set the domain boundary types at the low and high sides in the x, y, and z directions. This model
routine updates a domainBdryType[3]. See the explanation about domain bdry type e in Sec-
tion 2.3 for the supported domain boundary types.

38

Simulate mechanical interactions Update grid values (pre)

Update grid values (post)

Update agent states Solve PDEs

Simulate agent birth and death

Iter0 = 0

Start main loop

iter0 < #
baseline time

steps

iter1 < # state-
and-grid time

steps

Inject cells

Iter1 = 0

Regrid

End main loop

Iter1++

Yes

No

Yes

No

1. addSpAgents (P)

1. updateIfGridAMRTags (IB)

1. computeForceSpAgent (AP)
2. computeExtraMechIntrctSpAgent (AP)

1. spAgentSecretionBySpAgent (A)
2. updateSpAgentBirthDeath (A)
3. adjustSpAgent(A)
4. divideSpAgent (A)
5. disappearSpAgent (A)

1. spAgentCRNODERHS (A)
2. updateSpAgentState (A)

1. updateIfGridVar (IB)

1. updateIfGridVar (IB)

1. updateIfGridKappa (IB)
2. updateIfGridAlpha (IB)
3. updateIfGridBetaInIfRegion (IF)
4. updateIfGridBetaGridBufferBdry (IF)
5. updateIfGridBetaDomainBdry (IF)
6. updateIfGridRHSLinear (IB)
7. adjustIfGridRHSTimeDependentLinear

(IB)
8. updateIfGridRHSTimeDependentSplit-

ting (IB)
9. updateIfGridDirichletBCVal (IF)
10. updateIfGridNeumannBCVal (IF)
11. updatePDEBufferKappa (PB)
12. updatePDEBufferAlpha (PB)
13. updatePDEBufferBetaInGridBufferRe-gion

(PF)
14. updatePDEBufferBetaDomainBdry (PF)
15. updatePDEBufferRHSLinear (PB)
16. adjustPDEBufferRHSTimeDependentLi-

near (PB)
17. updatePDEBufferRHSTimeDependent-

Splitting (PB)
18. updatePDEBufferDirichletBCVal (PF)
19. updatePDEBufferNeumannBCVal (PF)

Iter0++

1. updateSpAgentOutput (A)
2. updateSummaryVar (IB)

File & summary output

1. updateSpAgentOutput (A)
2. updateSummaryVar (IB)

File & summary output

Regrid 1. updateIfGridAMRTags (IB)

Figure 4.2. Main loop.

4.2.4 updatePDEBufferBdryType

void updatePDEBufferBdryType(pde buffer bdry type e& pdeBufferBdryType)

Set the boundary type between an interface grid partition and a PDE buffer partition. This model
routine updates pdeBufferBdryType. See the explanation about pde buffer bdry type e in Sec-
tion 2.3 for the supported PDE buffer boundary types.

39

Set PDE parameters

Start solving a PDE

type ==
steady-state

reaction
diffusion linear

Update boundary condition

type == time-
dependent

reaction
diffusion linear

Solve an elliptic linear PDE

Iter = 0

iter0 < # PDE
time steps

Update boundary condition

Adjust source parameters

Single step a parabolic PDE

iter0 < # PDE
time steps

Solve a system of ODEs

Update boundary condition

Single step a parabolic PDE

Iter1 = 0

Iter1 < #
splitting PDE

diffusion time
steps

Iter = 0

Iter0++

Iter1++

No (type == time-dependent reaction diffusion splitting)

Iter0++

End solving a PDE

No

No

No

No

Yes

Yes

Yes

Yes

Yes

1. adjustIfGridRHSTimeDependentLinear (IB)
2. adjustPDEBufferRHSTimeDependentLinear (PB)

1. updateIfGridKappa (IB)
2. updateIfGridAlpha (IB)
3. updateIfGridBetaInIfRegion (IF)
4. updateIfGridBetaGridBufferBdry (IF)
5. updateIfGridBetaDomainBdry (IF)
6. updateIfGridRHSLinear (IB)
7. updatePDEBufferKappa (PB)
8. updatePDEBufferAlpha (PB)
9. updatePDEBufferBetaInGridBufferRe-

gion (PF)
10. updatePDEBufferBetaDomainBdry (PF)
11. updatePDEBufferRHSLinear (PB)

1. updateIfGridDirichletBCVal
2. updateIfGridNeumannBCVal
3. updateGridBufferDirichletBCVal
4. updateGridBufferNeumannBCVal

1. updateIfGridRHSTimeDependentSplitting (IB)
2. updatePDEBufferRHSTimeDependentSplitting (PB)

1. updateIfGridDirichletBCVal
2. updateIfGridNeumannBCVal
3. updateGridBufferDirichletBCVal
4. updateGridBufferNeumannBCVal

1. updateIfGridDirichletBCVal (IF)
2. updateIfGridNeumannBCVal (IF)
3. updatePDEBufferDirichletBCVal (PF)
4. updatePDEBufferNeumannBCVal (PF)

Figure 4.3. Solving a PDE.

Perform model-specific
termination

Start termination

End initialization

1. term (M)

Figure 4.4. Termination.

4.2.5 updateTimeStepInfo

void updateTimeStepInfo(TimeStepInfo& timeStepInfo)

Set baseline time step size and state-and-grid time step size. This model routine updates timeStepInfo.
See Section 2.4.5 to find details about the TimeStepInfo class.

40

4.2.6 updateSyncMethod

void updateSyncMethod(sync method e& extraMechIntrctSyncMethod, sync method e& adjustG
ridPhiAndModelVarSyncMethod)

Set the synchronization method when a single variable is updated in multiple model routine calls.
This model routine updates extraMechIntrctSyncMethod (for extra direct mechanical interactions
between agent pairs, see computeExtraMechIntrctSpAgent() in Section 4.4.3) and adjustGridPhi-
AndModelVarSyncMethod (to update extra-cellular space state variables based on model specific
rules, see updateIfGridVar() in Section 4.5.2). See the explanation about sync method e in Sec-
tion 2.3 for the supported synchronization mechanisms.

4.2.7 updateSpAgentInfo

void updateSpAgentInfo(Vector<SpAgentInfo>& v spAgentInfo)

Provide the information about the discrete agent types in the user model. This model routine up-
dates v spAgentInfo. The size of v spAgentInfo coincides with the number of discrete agent types.
Each vector element provides the information about a single discrete agent type. See Section 2.4.7
for additional details about the SpAgentInfo class.

4.2.8 updateJunctionEndInfo

void updateJunctionEndInfo(Vector<JunctionEndInfo>& v junctionEndInfo)

Provide the information about the junction end types in the user model. This model routine up-
dates v junctionEndInfo. The size of v junctionEndInfo coincides with the number of junction
end types. Each vector element provides the information about a single junction end type. See
Section 2.4.8 for additional details about the JunctionEndInfo class.

4.2.9 updatePDEInfo

void updatePDEInfo(Vector<PDEInfo>& v pdeInfo)

Provide the information about the molecular species in the user model. This model routine up-
dates v pdeInfo. The size of v pdeInfo coincides with the number of molecular species. Each
vector element provides the information about a single molecular species. See Section 2.4.12 for
additional details about the PDEInfo class.

4.2.10 updateIfGridModelVarInfo

void updateIfGridModelVarInfo(Vector<IfGridModelVarInfo>& v ifGridModelRealInfo, Vecto
r<IfGridModelVarInfo>& v ifGridModelIntInfo)

Provide the information about the model specific attributes for the extra-cellular space in the user
model. This model routine updates v ifGridModelRealInfo (for REAL type attributes) and v if-

41

GridModelIntInfo (for S32 type variables). The sizes of v ifGridModelRealInfo and v ifGridMod-
elIntInfo coincide with the number of REAL type and S32 type model specific attributes, respec-
tively. Each vector element provides the information about a single model specific attribute. See
Section 2.4.13 for additional details about the IfGridModelVarInfo class.

4.2.11 updateRNGInfo

void updateRNGInfo(Vector<RNGInfo>& v rngInfo)

Provide the information about the random number generators used in the model. This model
routine updates v rngInfo. The size of v rngInfo coincides with the number of random number
generators. Each vector element provides the information about a single random number genera-
tor. See Section 2.4.14 for additional details about the RNGInfo class.

4.2.12 updateFileOutputInfo

void updateFileOutputInfo(FileOutputInfo& fileOutputInfo)

Provide the information about file output of simulation results. This model routine updates file-
OutputInfo. See Section 2.4.15 for additional details about the FileOutputInfo class.

4.2.13 updateSummaryOutputInfo

void updateSummaryOutputInfo(SummaryOutputInfo& summaryOutputInfo)

Provide the information about summary output of simulation results. This model routine updates
summaryOutputInfo. See Section 2.4.16 for additional details about the SummaryOutputInfo class.

4.2.14 updateGlobalData

void updateGlobalData(Vector<U8>& v globalData)

Update the global data shared by every MPI process. Once v globalData is updated in this model
routine, the data is copied to every MPI process. v globalData cannot be updated elsewhere.
getGlobalDataRef() (Section 3.1.4) returns a constant reference to the updated data.

4.2.15 init

void init(void)

Users may perform model specific initialization inside this function.

4.2.16 term

void term(void)

42

Users may perform model specific clean-up inside this function.

4.2.17 setPDEBuffer

void setPDEBuffer(const VIdx& startVIdx, const VIdx& regionSize, BOOL& isPDEBuffer)

Mark whether this partition is an interface grid partition (set isPDEBuffer to false) or a PDE
buffer partition (set isPDEBuffer to true). startVIdx points the low end corner of this partition,
and regionSize is the size of this partition assuming the interface grid spacing.

4.2.18 setHabitable

void setHabitable(const VIdx& vIdx, BOOL& isHabitable)

Mark whether this unit box (indexed by vIdx) is habitable (set isHabitable to true) or not (set
isHabitable to false). If this unit box is marked as uninhabitable, discrete agents cannot penetrate
into this unit box.

4.3 Individual Agent Behavior

4.3.1 addSpAgents

void addSpAgents(const BOOL init, const VIdx& startVIdx, const VIdx& regionSize, const IfGrid
BoxData<BOOL>& ifGridHabitableBoxData, Vector<VIdx>& v spAgentVIdx, Vector<SpAge
ntState>& v spAgentState, Vector<VReal>& v spAgentOffset)

Add discrete agents to this partition at the beginning of a simulation (if init is true) or at the
beginning of a baseline time step (if init is false). startVIdx points the unit box at the low end
corner of this partition, and regionSize is the size of this partition. ifGridHabitableBoxData in-
forms whether a unit box in this partition is habitable or not. It is an error to add a discrete
agent to an uninhabitable unit box. This model routine updates v spAgentVIdx, v spAgentState,
and v spAgentOffset. The sizes of v spAgentVIdx, v spAgentState, and v spAgentOffset should be
same—one vector element for one newly added discrete agent. An element of v spAgentVIdx lo-
cates the unit box to place a discrete agent. An element of v spAgentState stores the state of a
discrete agent. An element of v spAgentOffset sets the discrete agent position offset within a unit
box (from the center of the unit box).

4.3.2 spAgentCRNODERHS

void spAgentCRNODERHS(const S32 odeNetIdx, const VIdx& vIdx, const SpAgent& spAgent, co
nst Vector<NbrBox<REAL> >& v gridPhiNbrBox, const Vector<NbrBox<REAL> >& v grid
ModelRealNbrBox, const Vector<NbrBox<S32> >& v gridModelIntNbrBox, const Vector<dou
ble>& v y, Vector<double>& v f)

Set the right hand side (the derivatives) of the odeNetIdxth ODE system for this discrete agent.
vIdx indexes the unit box this discrete agent is located in. spAgent provides the information about

43

this discrete agent. v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbrBox pro-
vide the information (molecular concentrations, model specific REAL type attributes, and model
specific S32 type attributes, respectively) about the extra-cellular space for this box and the 26
neighboring boxes. v y stores the current values of the ODE system variables. This model rou-
tine updates v f which stores the derivatives for the variables in the ODE system. The ODE sys-
tems for a discrete agent are updated before updateSpAgentState() is called for the agent.

4.3.3 updateSpAgentState

void updateSpAgentState(const VIdx& vIdx, const AgentJunctionInfo& junctionInfo, const VReal
& vOffset, const Vector<NbrBox<REAL> >& v gridPhiNbrBox, const Vector<NbrBox<REAL
> >& v gridModelRealNbrBox, const Vector<NbrBox<S32> >& v gridModelIntNbrBox, SpAg
entState& state)

Update the state of this discrete agent. vIdx indexes the unit box this discrete agent is located
in. junctionInfo stores the list of junctions between this discrete agent and its neighboring dis-
crete agents. vOffset is the offset from the center of the unit box this discrete agent belongs to.
v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbrBox provide the information
(molecular concentrations, model specific REAL type attributes, and model specific S32 type at-
tributes, respectively) about the extra-cellular space for this box and the 26 neighboring boxes.
This model routine updates state based on the provided information. state initially holds the state
of this discrete agent. updateSpAgentState() is called after the ODE systems for the discrete agent
are updated.

4.3.4 spAgentSecretionBySpAgent

void spAgentSecretionBySpAgent(const VIdx& vIdx, const AgentJunctionInfo& junctionInfo, con
st VReal& vOffset, const AgentMechIntrctData& mechIntrctData, const Vector<NbrBox<REAL
> >& v gridPhiNbrBox, const Vector<NbrBox<REAL> >& v gridModelRealNbrBox, const Ve
ctor<NbrBox<S32> >& v gridModelIntNbrBox, SpAgentState& state, Vector<SpAgentState>
& v spAgentState, Vector<VReal>& v spAgentDisp)

Secrete new discrete agents from this discrete agent. vIdx indexes the unit box this discrete agent
is located in. junctionInfo stores the list of junctions between this discrete agent and its neigh-
boring discrete agents. vOffset is the offset from the center of the unit box this discrete agent be-
longs to. mechIntrctData stores the temporary mechanical interaction state of this discrete agent.
v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbrBox provide the information
(molecular concentrations, model specific REAL type attributes, and model specific S32 type at-
tributes, respectively) about the extra-cellular space for this box and the 26 neighboring boxes.
This model routine updates this discrete agent’s state (state) and the states (v spAgentState) and the
displacements (from this discrete agent, v spAgentDisp) of newly secreted discrete agents. The
displacement values cannot exceed the interface grid spacing. v spAgentState and v spAgentDisp
should have same size—one element for one newly secreted discrete agent. state initially holds
the state of this discrete agent. spAgentSecretionBySpAgent() is called before updateSpAgent-
BirthDeath() within a single baseline time step.

44

4.3.5 updateSpAgentBirthDeath

void updateSpAgentBirthDeath(const VIdx& vIdx, const SpAgent& spAgent, const AgentMechInt
rctData& mechIntrctData, const Vector<NbrBox<REAL> >& v gridPhiNbrBox, const Vector<
NbrBox<REAL> >& v gridModelRealNbrBox, const Vector<NbrBox<S32> >& v gridModelI
ntNbrBox, BOOL& divide, BOOL& disappear)

Mark whether this discrete agent will divide or disappear. vIdx indexes the unit box this dis-
crete agent is located in. spAgent provides the information about this discrete agent. mechIntrct-
Data stores the temporary mechanical interaction state of this discrete agent. v gridPhiNbrBox,
v gridModelRealNbrBox, and v gridModelIntNbrBox provide the information (molecular concen-
trations, model specific REAL type attributes, and model specific S32 type attributes, respectively)
about the extra-cellular space for this box and the 26 neighboring boxes. This model routine
updates divide and disappear. Set divide to true if this discrete agent is going to divide. di-
videSpAgent() (Section 4.3.7) will be called if divide is set to true. Set disappear to true if this
discrete agent is subject to disappear. If neither divide nor disappear is set to true, adjustSpAgent()
(Section 4.3.6) is called. It is an error to set both divide and disappear to true. updateSpAgent-
BirthDeath() is called after spAgentSecretionBySpAgent() within a single baseline time step.

4.3.6 adjustSpAgent

void adjustSpAgent(const VIdx& vIdx, const AgentJunctionInfo& junctionInfo, const VReal& vO
ffset, const AgentMechIntrctData& mechIntrctData, const Vector<NbrBox<REAL> >& v gridP
hiNbrBox, const Vector<NbrBox<REAL> >& v gridModelRealNbrBox, const Vector<NbrBox
<S32> >& v gridModelIntNbrBox, SpAgentState& state, VReal& disp)

Adjust the state and position of this discrete agent. vIdx indexes the unit box this discrete agent
is located in. junctionInfo stores the list of junctions between this discrete agent and its neigh-
boring discrete agents. vOffset is the offset from the center of the unit box this discrete agent be-
longs to. mechIntrctData stores the temporary mechanical interaction state of this discrete agent.
v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbrBox provide the information
(molecular concentrations, model specific REAL type attributes, and model specific S32 type at-
tributes, respectively) about the extra-cellular space for this box and the 26 neighboring boxes.
This model routine updates the state of this discrete agent (state) and the displacement from the
original position (disp). state initially holds the state of this discrete agent. disp should not ex-
ceed the interface grid spacing.

4.3.7 divideSpAgent

void divideSpAgent(const VIdx& vIdx, const AgentJunctionInfo& junctionInfo, const VReal& vO
ffset, const AgentMechIntrctData& mechIntrctData, const Vector<NbrBox<REAL> >& v gridP
hiNbrBox, const Vector<NbrBox<REAL> >& v gridModelRealNbrBox, const Vector<NbrBox
<S32> >& v gridModelIntNbrBox, SpAgentState& motherState, VReal& motherDisp, SpAgentS
tate& daughterState, VReal& daughterDisp, Vector<BOOL>& v junctionDivide, BOOL& moth
erDaughterLinked, JunctionEnd& motherEnd, JunctionEnd& daughterEnd)

45

Divide this discrete agent to a mother discrete agent and a daughter discrete agent. vIdx indexes
the unit box this discrete agent is located in. junctionInfo stores the list of junctions between this
discrete agent and its neighboring discrete agents. vOffset is the offset from the center of the unit
box this discrete agent belongs to. mechIntrctData stores the temporary mechanical interaction
state of this discrete agent. v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbr-
Box provide the information (molecular concentrations, model specific REAL type attributes, and
model specific S32 type attributes, respectively) about the extra-cellular space for this box and the
26 neighboring boxes. This model routine updates the states of the mother discrete agent and the
daughter discrete agent (motherState and daughterState, respectively), the displacements from the
original position for the mother and daughter discrete agents (motherDisp and daughterDisp, re-
spectively), and a junction between the mother and daughter discrete agents. motherState initially
stores the state of this discrete agent. Users may overwrite the initial state. v junctionDivide in-
dicates a subset of the junctions (if the v junctionDivide element for a junction is set to true, the
mother agent retains the junction) the mother agent will retain—the daughter agent inherits the
remaining junctions. A junction is formed between the mother and daughter discrete agents if
motherDaughterLinked is set to true with motherEnd and daughterEnd as the junction ends for
the mother and daughter sides, respectively. motherEnd and daughterEnd are irrelevant if moth-
erDaughterLinked is set to false.

4.4 Physico-Mechanical Interaction Between Agents

4.4.1 initJunctionSpAgent

void initJunctionSpAgent(const VIdx& vIdx0, const SpAgent& spAgent0, const VIdx& vIdx1, con
st SpAgent& spAgent1, const VReal& dir, const REAL& dist, BOOL& link, JunctionEnd& end0,
JunctionEnd& end1)

Initialize a junction between a discrete agent pair within the maximum direct interaction distance.
vIdx0 indexes the unit box spAgent0 is located in. vIdx1 indexes the unit box spAgent1 is located
in. dir is a unit vector from the position of spAgent1 to the position of spAgent0. dist is the dis-
tance between the positions of the two discrete agents. This model routine updates link, end0, and
end1. Set link to true to form a junction between the two discrete agents. end0 is the junction
end in the spAgent0 side and end1 is the junction end in the spAgent1 side. end0 and end1 are
irrelevant if link is set to false.

4.4.2 computeForceSpAgent

void computeForceSpAgent(const VIdx& vIdx0, const SpAgent& spAgent0, const Vector<REAL
>& v gridPhi0, const Vector<REAL>& v gridModelReal0, const Vector<S32>& v gridModelI
nt0, const VIdx& vIdx1, const SpAgent& spAgent1, const Vector<REAL>& v gridPhi1, const Ve
ctor<REAL>& v gridModelReal1, const Vector<S32>& v gridModelInt1, const VReal& dir, co
nst REAL& dist, VReal& force)

Update force between two discrete agents. vIdx0 indexes the unit box spAgent0 is located in.
v gridPhi0, v gridModelReal0, and v gridModelInt0 are molecular concentrations, model specific
REAL type variables, and model specific S32 type variables for the unit box spAgent0 belongs

46

to, respectively. vIdx1 indexes the unit box spAgent1 is located in. v gridPhi1, v gridModel-
Real1, and v gridModelInt1 are molecular concentrations, model specific REAL type variables,
and model specific S32 type variables for the unit box spAgent1 belongs to, respectively. dir is a
unit vector from the position of spAgent1 to the position of spAgent0. dist is the distance between
the positions of the two discrete agents. This model routine updates force.

4.4.3 computeExtraMechIntrctSpAgent

void computeExtraMechIntrctSpAgent(const VIdx& vIdx0, const SpAgent& spAgent0, const Vect
or<REAL>& v gridPhi0, const Vector<REAL>& v gridModelReal0, const Vector<S32>& v g
ridModelInt0, const VIdx& vIdx1, const SpAgent& spAgent1, const Vector<REAL>& v gridPhi
1, const Vector<REAL>& v gridModelReal1, const Vector<S32>& v gridModelInt1, const VRe
al& dir, const REAL& dist, ExtraMechIntrctData& extraMechIntrctData0, ExtraMechIntrctData
& extraMechIntrctData1, BOOL& link, JunctionEnd& end0, JunctionEnd& end1, BOOL& unlin
k)

Evaluate extra mechanical interactions between a discrete agent pair. vIdx0 indexes the unit box
spAgent0 is located in. v gridPhi0, v gridModelReal0, and v gridModelInt0 are molecular con-
centrations, model specific REAL type variables, and model specific S32 type variables for the
unit box spAgent0 belongs to, respectively. vIdx1 indexes the unit box spAgent1 is located in.
v gridPhi1, v gridModelReal1, and v gridModelInt1 are molecular concentrations, model specific
REAL type variables, and model specific S32 type variables for the unit box spAgent1 belongs to,
respectively. dir is a unit vector from the position of spAgent1 to the position of spAgent0. dist
is the distance between the positions of the two discrete agents. This model routine updates the
temporary extra mechanical interaction states for spAgent0 and spAgent1 which are extraMechIn-
trctData0 and extraMechIntrctData1, respectively. Temporary mechanical interaction state vari-
ables are reset to zero at the beginning of every baseline time step. Users also form and break a
junction between a discrete agent pair in this model routine. If the two discrete agents are linked
and link is set to true, the junction ends in the spAgent0 and spAgent1 sides are replaced with end0
and end1, respectively—isLinked (Section 2.4.19) returns whether two discrete agents are linked
or not. If spAgent0 and spAgent1 are linked and unlink is set to true, the Biocellion framework
breaks the junction. If there is no junction between spAgent0 and spAgent1 and link is set to true,
a new junction is formed with junction ends end0 and end1. If there is no junction and unlink is
set to true or both link and unlink is set to false, no change occurs. It is an error to set both link
and unlink to true.

4.5 State Changes in the Extra-cellular Space

4.5.1 initIfGridVar

void initIfGridVar(const VIdx& vIdx, const UBAgentData& ubAgentData, Vector<REAL>& v g
ridPhi, Vector<REAL>& v gridModelReal, Vector<S32>& v gridModelInt)

Initialize the state variables associated with an interface grid unit box. vIdx indexes the unit box.
ubAgentData holds the discrete agents located in this unit box. This model routine updates the
molecular concentrations (v gridPhi), the model specific REAL type attributes (v gridModelReal),

47

and the model specific S32 type attributes (v gridModelInt) for this unit box.

4.5.2 updateIfGridVar

void updateIfGridVar(const BOOL pre, const S32 round, const VIdx& vIdx, const NbrBox<const
UBAgentData*>& ubAgentDataPtrNbrBox, Vector<NbrBox<REAL> >& v gridPhiNbrBox, V
ector<NbrBox<REAL> >& v gridModelRealNbrBox, Vector<NbrBox<S32> >& v gridModel
IntNbrBox)

Update the state variables associated with an interface grid unit box and its 26 neighboring boxes.
It is an error to access or update values associated with a unit box location outside the simulation
domain or a unit box location in a PDE buffer region. pre indicates whether this routine is called
at the beginning of a state-and-grid time step (if pre is true) or at the end of a state-and-grid time
step (if pre is false). round indicates the round in which this model routine is called—users are al-
lowed update extra-cellular space state variables in multiple rounds (Section 2.4.6). vIdx indexes
this unit box. ubAgentDataPtrNbrBox holds pointers for UBAgentData class instances for this
unit box and its 26 neighboring unit boxes. This model routine updates the molecular concen-
trations (v gridPhiNbrBox), the model specific REAL type attributes (v gridModelRealNbrBox),
and the model specific S32 type attributes (v gridModelIntNbrBox) for this unit box and its 26
neighboring unit boxes. v gridPhiNbrBox, v gridModelRealNbrBox, and v gridModelIntNbrBox
initially holds the current values associated with this box and its 26 neighboring boxes, and users
may update a subset of the values based on their model specifics.

4.5.3 updateIfGridKappa

void updateIfGridKappa(const VIdx& vIdx, const UBAgentData& ubAgentData, const Vector<
REAL>& v gridPhi, const Vector<REAL>& v gridModelReal, const Vector<S32>& v gridMo
delInt, REAL& gridKappa)

Set the ratio of the available extra-cellular volume in computing diffusion flux. molecular concen-
tration in Biocellion is the total amount of a molecular species in a unit box divided by the volume
of the unit box. However, in computing diffusion, the direction and rate of diffusion is determined
by the molecular concentration in the free space. If one unit box is heavily occupied by cells and
another unit box has no cell, then the net amount of diffusion to the empty unit box can be positive
even when the molecular concentration (ignoring cell volume exclusion) in the empty unit box is
higher. This model routine sets gridKappa to consider cell volume exclusion in computing diffu-
sion flux. Say there are two unit boxes (box0 and box1) sharing a face. φ0 and φ1 are molecular
concentrations for box0 and box1, respectively. κ0 and κ1 are gridKappa values set for box0 and
box1, respectively. β is the diffusion coefficient set for the common face. Then, the diffusion flux
from box0 to box1 becomes β× (φ0

κ0
− φ1

κ1
)× 1

h . vIdx indexes this unit box. ubAgentData holds
the entire set of discrete agents in this unit box. v gridPhi, v gridModelReal, and v gridModelInt
are molecular concentrations, model specific REAL type variables, and model specific S32 type
variables for this unit box, respectively. 0.0 < gridKappa≤ 1.0. Set gridKappa to 1.0 to ignore
cell volume exclusion. gridKappa is assumed to be 1.0 outside the simulation domain.

48

4.5.4 updateIfGridAlpha

void updateIfGridAlpha(const S32 elemIdx, const VIdx& vIdx, const UBAgentData& ubAgentDa
ta, const Vector<REAL>& v gridPhi, const Vector<REAL>& v gridModelReal, const Vector<
S32>& v gridModelInt, REAL& gridAlpha)

Set the decay rate for the elemIdxth molecular species. vIdx indexes this unit box. ubAgent-
Data holds the entire set of discrete agents in this unit box. v gridPhi, v gridModelReal, and
v gridModelInt are molecular concentrations, model specific REAL type variables, and model
specific S32 type variables for this unit box, respectively. This model routine updates gridAlpha.
−1.0 < gridAl pha≤ 0.0. Set gridAlpha to 0.0 to ignore decay.

4.5.5 updateIfGridBetaInIfRegion

void updateIfGridBetaInIfRegion(const S32 elemIdx, const S32 dim, const VIdx& vIdx0, const VI
dx& vIdx1, const UBAgentData& ubAgentData0, const UBAgentData& ubAgentData1, const Ve
ctor<REAL>& v gridPhi0, const Vector<REAL>& v gridPhi1, const Vector<REAL>& v grid
ModelReal0, const Vector<REAL>& v gridModelReal1, const Vector<S32>& v gridModelInt0
, const Vector<S32>& v gridModelInt1, REAL& gridBeta)

Set the diffusion coefficient for the elemIdxth molecular species for a unit box face inside the
interface region. The unit box face is orthogonal to a unit vector in the x (if dim is 0), y (if dim
is 1), or z (if dim is 2) direction. vIdx0 indexes the unit box at the low side of the face and vIdx1
indexes the unit box at the high side of the face. ubAgentData0 and ubAgentData1 hold discrete
agents at the low and high side unit boxes, respectively. v gridPhi0 and v gridPhi1 are molecular
concentrations for the low and high side unit boxes, respectively. v gridModelReal0 and v grid-
ModelReal1 are the model specific REAL type variables for the unit boxes at the low and high
sides. v gridModelInt0 and v gridModelInt1 are the model specific S32 type variables for the unit
boxes at the low and high sides, respectively. This model routine updates gridBeta.

4.5.6 updateIfGridBetaPDEBufferBdry

void updateIfGridBetaPDEBufferBdry(const S32 elemIdx, const S32 dim, const VIdx& vIdx, cons
t UBAgentData& ubAgentData, const Vector<REAL>& v gridPhi, const Vector<REAL>& v gr
idModelReal, const Vector<S32>& v gridModelInt, REAL& gridBeta)

Set the diffusion coefficient for the elemIdxth molecular species for a unit box face between an
interface grid partition and a PDE buffer partition. The unit box face is orthogonal to a unit vector
in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. vIdx indexes the unit box in
the interface grid partition. ubAgentData holds the entire set of discrete agents in this unit box.
v gridPhi, v gridModelReal, and v gridModelInt are the molecular concentrations, model specific
REAL type variables, and model specific S32 type variables for the unit box in the interface grid
partition, respectively. This model routine updates gridBeta.

49

4.5.7 updateIfGridBetaDomainBdry

void updateIfGridBetaDomainBdry(const S32 elemIdx, const S32 dim, const VIdx& vIdx, const U
BAgentData& ubAgentData, const Vector<REAL>& v gridPhi, const Vector<REAL>& v grid
ModelReal, const Vector<S32>& v gridModelInt, REAL& gridBeta)

Set the diffusion coefficient for the elemIdxth molecular species for a unit box face at the do-
main boundary. The unit box face is orthogonal to a unit vector in the x (if dim is 0), y (if dim is
1), or z (if dim is 2) direction. vIdx indexes the unit box in the interface grid partition. ubAgent-
Data holds the entire set of discrete agents in this unit box. v gridPhi, v gridModelReal, and
v gridModelInt are the molecular concentrations, model specific REAL type variables, and model
specific S32 type variables for the unit box in the interface grid partition, respectively. This model
routine updates gridBeta.

4.5.8 updateIfGridRHSLinear

void updateIfGridRHSLinear(const S32 elemIdx, const VIdx& vIdx, const UBAgentData& ubAge
ntData, const Vector<REAL>& v gridPhi, const Vector<REAL>& v gridModelReal, const Vect
or<S32>& v gridModelInt, REAL& gridRHS)

Update the source term for the elemIdxth molecular species. This model routine is relevant only
for linear PDEs (PDE TYPE REACTION DIFFUSION STEADY STATE LINEAR and PDE -
TYPE REACTION DIFFUSION TIME DEPENDENT LINEAR). vIdx indexes this unit box. ubAgent-
Data holds the entire set of discrete agents in this unit box. v gridPhi, v gridModelReal, and
v gridModelInt are molecular concentrations, model specific REAL type variables, and model
specific S32 type variables for this unit box, respectively. This model routine updates gridRHS.

4.5.9 adjustIfGridRHSTimeDependentLinear

void adjustIfGridRHSTimeDependentLinear(const S32 elemIdx, const VIdx& vIdx, const REAL g
ridPhi, const Vector<REAL>& v gridModelReal, const Vector<S32>& v gridModelInt, REAL
& gridRHS)

Adjust the source term for the elemIdxth molecular species. This model routine is invoked in ev-
ery PDE time step and is relevant only for time-dependent linear PDEs (PDE TYPE REACTION -
DIFFUSION TIME DEPENDENT LINEAR). This model routine is called only when users con-
figure to call this function (Section 2.4.12). vIdx indexes this unit box. ubAgentData holds the
entire set of discrete agents in this unit box. gridPhi is the concentration of the elemIdxth molec-
ular species at the beginning of a PDE time step. v gridModelReal and v gridModelInt are the
model specific REAL type variables and model specific S32 type variables for this unit box, re-
spectively. gridRHS is initially set to the gridRHS value set inside the updateIfGridRHSLinear()
function for this molecular species. Users may change the value based on model specifics.

50

4.5.10 updateIfGridRHSTimeDependentSplitting

void updateIfGridRHSTimeDependentSplitting(const S32 pdeIdx, const VIdx& vIdx, const UBAg
entData& ubAgentData, const Vector<double>& v gridPhi, const Vector<REAL>& v gridMod
elReal, const Vector<S32>& v gridModelInt, Vector<double>& v gridRHS)

Set the derivative values for the reaction term of the pdeIdxth PDE which is solved using the split-
ting scheme. vIdx indexes this unit box. ubAgentData holds the entire set of discrete agents in
this unit box. v gridPhi holds molecular concentrations for the molecular species in this PDE—
the size of the vector is equal to the number of molecular species in this PDE, and the first vector
element holds the molecular concentration for the molecular species in this PDE with the smallest
molecular species index. v gridModelReal and v gridModelInt are the model specific REAL type
variables and model specific S32 type variables for this unit box, respectively. This model routine
updates v gridRHS which holds the derivative values for the molecular species in this PDE.

4.5.11 updateIfGridAMRTags

void updateIfGridAMRTags(const VIdx& vIdx, const NbrBox<const UBAgentData*>& ubAgent
DataPtrNbrBox, const Vector<NbrBox<REAL> >& v gridPhiNbrBox, const Vector<NbrBox<
REAL> >& v gridModelRealNbrBox, const Vector<NbrBox<S32> >& v gridModelIntNbrBox
, Vector<S32>& v finestLevel)

Set the desired adaptive mesh refinement (AMR) level for this unit box. vIdx indexes this unit
box. ubAgentDataPtrNbrBox holds pointers for UBAgentData class instances for this unit box
and its 26 neighboring unit boxes. v gridPhiNbrBox, v gridModelRealNbrBox, and v gridMod-
elIntNbrBox are the molecular concentrations, model specific REAL type attributes, and model
specific S32 type attributes for this unit box and its 26 neighboring unit boxes, respectively. This
model routine updates v finestLevel which holds the desired finest AMR level for this unit box for
the PDEs in this simulation—index the vector using a PDE index, not a molecular species index.

4.5.12 updateIfGridDirichletBCVal

void updateIfGridDirchletBCVal(const S32 elemIdx, const VReal& pos, const S32 dim, const BO
OL lowSide, const REAL a gridPhi[3], const Vector<Vector<REAL> >& vv gridModelReal, co
nst Vector<Vector<S32> >& vv gridModelInt, REAL& bcVal)

Set the model specific Dirichlet boundary value for the elemIdxth molecular species for a unit box
face at the domain boundary. This model routine is valid only when BC TYPE DIRICHLET -
MODEL is selected. pos locates the center of the unit box face. The unit box face is orthogonal to
a unit vector in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. The face is at the low
side (if lowSide is true) or the high side (if lowSide is false) of the simulation domain. a gridPhi
holds molecular concentrations for the elemIdxth molecular species for the three interface grid unit
boxes closest to the boundary unit box face along the direction orthogonal to the face. vv grid-
ModelReal and vv gridModelInt hold model specific REAL and S32 type variables for the three
boxes closest to the boundary unit box face—e.g. vv gridModelReal[elemIdx][0] holds the value
for the elemIdxth model specific REAL type variable for the unit box closest to the boundary face.

51

This model routine updates bcVal.

4.5.13 updateIfGridNeumannBCVal

void updateIfGridNeumannBCVal(const S32 elemIdx, const VReal& pos, const S32 dim, const B
OOL lowSide, const REAL a gridPhi[3], const Vector<Vector<REAL> >& vv gridModelReal,
const Vector<Vector<S32> >& vv gridModelInt, REAL& bcVal)

Set the model specific Neumann boundary value for the elemIdxth molecular species for a unit
box face at the domain boundary. This model routine is valid only when BC TYPE NEUMANN -
MODEL is selected. pos locates the center of the unit box face. The unit box face is orthogonal to
a unit vector in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. The face is at the low
side (if lowSide is true) or the high side (if lowSide is false) of the simulation domain. a gridPhi
holds molecular concentrations for the elemIdxth molecular species for the three interface grid unit
boxes closest to the boundary unit box face along the direction orthogonal to the face. vv grid-
ModelReal and vv gridModelInt hold model specific REAL and S32 type variables for the three
boxes closest to the boundary unit box face. This model routine updates bcVal.

4.5.14 initPDEBufferPhi

void initPDEBufferPhi(const VIdx& startVIdx, const VIdx& pdeBufferBoxSize, Vector<REAL>
& v gridPhi)

Initialize molecular concentrations of a PDE buffer unit box. startVIdx points the low end cor-
ner of the PDE buffer unit box assuming the interface grid spacing (assuming that the interface
grid is applied on the entire simulation domain). pdeBufferBoxSize is the size of a PDE buffer
unit box assuming the interface grid spacing. This model routine updates v gridPhi.

4.5.15 updatePDEBufferKappa

void updatePDEBufferKappa(const S32 pdeIdx, const VIdx& startVIdx, const VIdx& pdeBufferB
oxSize, REAL& gridKappa)

Set the ratio of the available volume (used in computing diffusion flux) for a unit PDE buffer
box of the pdeIdxth PDE. startVIdx points the low end corner of the PDE buffer unit box assum-
ing the interface grid spacing. pdeBufferBoxSize is the size of a PDE buffer unit box assuming
the interface grid spacing. This model routine updates gridKappa. 0.0 < gridKappa≤ 1.0. Set
gridKappa to 1.0 to assume that 100% of the volume is free. gridKappa is assumed to be 1.0
outside the simulation domain.

4.5.16 updatePDEBufferAlpha

void updatePDEBufferAlpha(const S32 elemIdx, const VIdx& startVIdx, const VIdx& pdeBufferB
oxSize, REAL& gridAlpha)

Set the decay rate for the elemIdxth molecular species. startVIdx points the low end corner of

52

the PDE buffer unit box assuming the interface grid spacing. pdeBufferBoxSize is the size of a
PDE buffer unit box assuming the interface grid spacing. This model routine updates gridAlpha.
−1.0 < gridAl pha≤ 0.0. Set gridAlpha to 0.0 to ignore decay.

4.5.17 updatePDEBufferBetaInPDEBufferRegion

void updatePDEBufferBetaInPDEBufferRegion(const S32 elemIdx, const S32 dim, const VIdx& s
tartVIdx0, const VIdx& startVIdx1, const VIdx& pdeBufferBoxSize, REAL& gridBeta)

Set the diffusion coefficient for the elemIdxth molecular species for a PDE buffer grid unit box
face inside a PDE buffer region. The unit box face is orthogonal to a unit vector in the x (if dim
is 0), y (if dim is 1), or z (if dim is 2) direction. startVIdx0 points the low end of the unit box at
the low side of the face and startVIdx1 points the low end of the unit box at the high side of the
face assuming the interface grid spacing. pdeBufferBoxSize is the size of a PDE buffer unit box
assuming the interface grid spacing. This model routine updates gridBeta.

4.5.18 updatePDEBufferBetaDomainBdry

void updatePDEBufferBetaDomainBdry(const S32 elemIdx, const S32 dim, const VIdx& startVId
x, const VIdx& pdeBufferBoxSize, REAL& gridBeta)

Set the diffusion coefficient for the elemIdxth molecular species for a PDE buffer unit box face
at the domain boundary. The unit box face is orthogonal to a unit vector in the x (if dim is 0), y
(if dim is 1), or z (if dim is 2) direction. startVIdx points the low end corner of the PDE buffer
unit box in the PDE buffer partition assuming the interface grid spacing. pdeBufferBoxSize is the
size of a PDE buffer unit box assuming the interface grid spacing. This model routine updates
gridBeta.

4.5.19 updatePDEBufferRHSLinear

void updatePDEBufferRHSLinear(const S32 elemIdx, const VIdx& startVIdx, const VIdx& pdeB
ufferBoxSize, const REAL gridPhi, REAL& gridRHS)

Update the source term for the elemIdxth molecular species. This model routine is relevant only
for linear PDEs (PDE TYPE REACTION DIFFUSION STEADY STATE LINEAR and PDE -
TYPE REACTION DIFFUSION TIME DEPENDENT LINEAR). startVIdx points the low end cor-
ner of the PDE buffer unit box assuming the interface grid spacing. pdeBufferBoxSize is the size
of a PDE buffer unit box assuming the interface grid spacing. gridPhi holds the molecular concen-
tration of the elemIdxth molecular species for this PDE buffer grid unit box. This model routine
updates gridRHS.

4.5.20 adjustPDEBufferRHSTimeDependentLinear

void adjustPDEBufferRHSTimeDependentLinear(const S32 elemIdx, const VIdx& startVIdx, con
st VIdx& pdeBufferBoxSize, const REAL gridPhi, REAL& gridRHS)

53

Adjust the source term for the elemIdxth molecular species. This model routine is invoked in ev-
ery PDE time step and is relevant only for time-dependent linear PDEs (PDE TYPE REACTION -
DIFFUSION TIME DEPENDENT LINEAR). This model routine is called only when users con-
figure to call this function (Section 2.4.12). startVIdx points the low end corner of the PDE buffer
unit box assuming the interface grid spacing. pdeBufferBoxSize is the size of a PDE buffer unit
box assuming the interface grid spacing. gridPhi is the concentration of elemIdxth molecular
species in the unit box. gridRHS is initially set to the gridRHS value set inside the updatePDEBuf-
ferRHSLinear() function for this molecular species. Users may change the value based on model
specifics.

4.5.21 updatePDEBufferRHSTimeDependentSplitting

void updatePDEBufferRHSTimeDependentSplitting(const S32 pdeIdx, const VIdx& startVIdx, co
nst VIdx& pdeBufferBoxSize, const Vector<double>& v gridPhi, Vector<double>& v gridRHS)

Set the derivative values for the reaction term for the pdeIdxth PDE which is solved using the
splitting scheme. startVIdx points the low end corner of the PDE buffer unit box assuming the in-
terface grid spacing. pdeBufferBoxSize is the size of a PDE buffer unit box assuming the interface
grid spacing. v gridPhi holds molecular concentrations for the molecular species in this PDE—
the size of the vector is equal to the number of molecular species in this PDE, and the first vector
element holds the molecular concentration for the molecular species in this PDE with the smallest
molecular species index. This model routine updates v gridRHS which holds the derivative values
for the molecular species in this PDE.

4.5.22 updatePDEBufferDirichletBCVal

void updatePDEBufferDirichletBCVal(const S32 elemIdx, const VReal& startPos, const VReal&
pdeBufferFaceSize, const S32 dim, const BOOL lowSide, REAL& bcVal)

Set the model specific Dirichlet boundary value for the elemIdxth molecular species for a PDE
buffer unit box face at the domain boundary. This model routine is valid only when BC TYPE -
DIRICHLET MODEL is selected. startPos points the low end corner of the unit box face. pde-
BufferFaceSize is the size of a PDE buffer unit box face. The unit box face is orthogonal to a unit
vector in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. The face is at the low side (if
lowSide is true) or the high side (if lowSide is false) of the simulation domain. This model routine
updates bcVal.

4.5.23 updatePDEBufferNeumannBCVal

void updatePDEBufferNeumannBCVal(const S32 elemIdx, const VReal& startPos, const VReal&
pdeBufferFaceSize, const S32 dim, const BOOL lowSide, REAL& bcVal)

Set model specific Neumann boundary values for the elemIdxth molecular species for a PDE
buffer unit box face at the domain boundary. This model routine is valid only when BC TYPE -
NEUMANN MODEL is selected. startPos points the low end corenr of the unit box face. pdeBuffer-
FaceSize is the size of a PDE buffer unit box face. The unit box face is orthogonal to a unit vector

54

in the x (if dim is 0), y (if dim is 1), or z (if dim is 2) direction. The face is at the low side (if
lowSide is true) or the high side (if lowSide is false) of the simulation domain. This model routine
updates bcVal.

4.6 Simulation Output

4.6.1 updateSpAgentOutput

void updateSpAgentOutput(const VIdx& vIdx, const SpAgent& spAgent, REAL& color, Vector<
REAL>& v extra)

Set the output variables for a discrete agent. vIdx indexes the unit box this discrete agent (spA-
gent) belongs to. This model routine update the color variable (color) and the model specific extra
output variables (v extra). The number of model specific output variables for a discrete agent is
set inside the simulation configuration file (see Section 6.3).

4.6.2 updateSummaryVar

void updateSummaryVar(const VIdx& vIdx, const NbrBox<const UBAgentData*>& ubAgentDa
taPtrNbrBox, const Vector<NbrBox<REAL> >& v gridPhiNbrBox, const Vector<NbrBox<RE
AL> >& v gridModelRealNbrBox, cosnt Vector<NbrBox<S32> >& v gridModelIntNbrBox , V
ector<REAL>& v realVar, Vector<S32>& v intVar)

Update the values of the summary variables. The entire set of summary variables (one variable per
interface grid unit box) for each attribute are reduced to get a summary value (one summary value
per attribute). vIdx indexes this unit box. ubAgentDataPtrNbrBox holds pointers for UBAgent-
Data class instances for this unit box and its 26 neighboring unit boxes. v gridPhiNbrBox, v -
gridModelRealNbrBox, and v gridModelIntNbrBox pass the molecular concentrations, the model
specific REAL type attributes, and the model specific S32 type attributes, respectively (for this unit
box and its 26 neighboring unit boxes). This model routine updates summary values for REAL
type attributes (v realVal) and S32 type attributes (v intVal).

55

5.0 Sample Implementations

We provide two sample implementations porting Momeni et al.’s yeast patterning model (Mo-
meni et al. 2013) and Resat et al.’s bacteria on soil aggregate model (Resat et al. 2011). See the
cited papers for additional model details. Kang et al. (Kang et al. TBP) also portray the porting
process of the yeast patterning model and we refer interested readers to the article.

The yeast patterning model code is located under $BIOCELLION ROOT/libmodel/model
-yeast-pattering, and the bacteria on soil aggregate model is located under $BIOCELLI
ON ROOT/libmodel/model-soil-bacteria. See $BIOCELLION ROOT/framewor
k/main/yeast-patterning-5um.xml and $BIOCELLION ROOT/framework/main
/yeast-patterning-20um.xml for simulation configuration files for the yeast patterning
model with 5 µm and 20 µm interface grid spacings, respectively—see Section 6.3 for details
about simulation configuration files. A sample simulation configuration file for the bacteria on
soil aggregate model is in $BIOCELLION ROOT/framework/main/soil-bacteria.x
ml. To adopt the 5 µm grid spacing for the yeast patterning model, IF GRID SPACING 5 -
MICRO METER in $BIOCELLION ROOT/libmodel/model-yeast-pattering/model
define.h should be set to 1 before compiling the model code. To adopt the 20 µm grid spacing,
IF GRID SPACING 5 MICRO METER needs to be set to 0.

57

6.0 Biocellion Installation and Execution

6.1 System Requirements

Biocellion runs on a spectrum of parallel computers ranging from multicore PCs and workstations
to cluster computers, Cloud computers, and supercomputers—users do not need to change their
model code to run on different platforms. The current version of Biocellion runs only on x86
compatible systems (a great majority of computers with Intel or AMD CPUs are x86 compatible).
Biocellion runs on 64-bit Linux operating systems. Compiling Biocellion model code requires a
C++ compiler—we have tested using the GNU gcc compiler and the Intel icc compiler. Biocellion
uses the Intel Thread Building Blocks library for multi-threading, and the library is freely available
from the thread building blocks homepage (http://threadingbuildingblocks.org).
Biocellion is pre-installed in Amazon EC2 (Section 6.6).

6.2 Compiling Biocellion

6.2.1 Compiling Model Code

Biocellion users first need to update directory paths in $BIOCELLION ROOT/Makefile.com
mon. BIOCELLION ROOT should point the Biocellion root directory.

REAL in $BIOCELLION ROOT/Makefile.common is set to “double” by default. Users can
set REAL to “float” to use single-precision floating point arithmetic instead of double-precision
floating point arithmetic. MPAGENT should be set to “no” and SPAGENT should be set to “yes”
in the current version. Users can set DEBUG to “yes” for debugging support (to use GDB) or “no”
for high-performance.

Users may update several variables in $BIOCELLION ROOT/Makefile.model to use differ-
ent compilers or different compilation flags—the default is to use GNU gcc. We strongly encour-
age users to enable checks on model routine outputs and input arguments of Biocellion support
functions by setting CHECK FLAG to “-DENABLE CHECK=1” at the early stage of model devel-
opment. Once the model code is well verified, users may disable the checks (set CHECK FLAG to
“-DENABLE CHECK=0”) to expedite simulation.

Biocellion builds a model library using the model code under $BIOCELLION ROOT/libmo
del/model. To test using one of the two sample models, users create a soft link (e.g. under
$BIOCELLION ROOT/libmodel type “ln -s model-yeast-patterning-updated model”) and type
“make” under $BIOCELLION ROOT/libmodel. Once compilation completes, libmodel.so
will be created under $BIOCELLION ROOT/libmodel/interface.

6.2.2 Compiling the Biocellion Core Framework

Advanced users may want to recompile the Biocellion core framework to use a different compiler
with different optimization flags or to link the Biocellion core framework to a different flavor of
MPI library.

59

Compiling the core framework is more involved and requires the Intel Thread Building Block
library (version 4.2 or later), Intel math kernel library (MKL), Intel ODE library, PNNL Global
Arrays (http://www.emsl.pnl.gov/docs/global), and MPI in addition. Compiling
the core framework also requires a C++ compiler that supports c++0x extension—recent versions
of GNU gcc and Intel icc support the extension.

Users set DIST MEM PAR in $BIOCELLION ROOT/Makefile.framework to “yes” to cre-
ate a Biocellion executable that runs using multiple MPI processes or to “no” to create a Biocellion
version that runs using only one (multi-threaded) process. Users also need to update other direc-
tory paths in the file. Typing “make” under $BIOCELLION ROOT/framework places a newly
created executable under $BIOCELLION ROOT/framework/main.

6.3 Simulation Configuration File

Biocellion asks users to provide specifics of a simulation instance in an XML file (sample files are
located under $BIOCELLION ROOT/framework/main).

6.3.1 Required Elements

• time step: Set the number of baseline time steps to execute. For example, <time step num
baseline=‘‘60000’’/ > asks Biocellion to run for 60,000 baseline time steps.

• domain: Set the domain sizes in the x, y, and z directions. For example, <domain x=‘
‘128’’ y=‘‘128’’ z=‘‘4928’’/ > sets the domain size to 128 × 128 × 4928 assuming the
interface grid spacing. Domain sizes in the x, y, and z directions should be equal to or larger
than the minimum partition size (which is 4). If adaptive mesh refinement (AMR) is used
to solve PDEs, domain sizes in the x, y, and z directions should be a positive integer multiple
of AMR ratio# AMR levels−1×4—See Section 6.3.2 for AMR ratio (default value is 2).

• init data: Set the initialization method, partition size, and initialization file type and path.
Initialization method can be either “code” or “file”. If the initialization method is set to
“file”, Biocellion users need to set file type (“binary” is the only valid option at this point)
and path. For example, <init data partition size=‘‘32’’ src=‘‘file’’ file type=‘‘binar
y’’ path=‘‘/data/input’’/> sets Biocellion to set partition size to 32 and initialize using
check point data under /data/input. Partition size should be equal to or larger than the
minimum partition size (which is 4). If adaptive mesh refinement (AMR) is used to solve
PDEs, partition size should be a positive integer multiple of AMR ratio# AMR levels−1× 4—
See Section 6.3.2 for AMR ratio (default value is 2). Note that the number of partitions in
the simulation domain should be equal to or larger than the number of MPI processes in the
target system to avoid idling MPI processes—if the amount of computing in each partition
varies significantly, more partitions are necessary to load-balance.

• output: Set the output path, interval, and file formats (“pvtu” is the only valid option for
discrete agent and “vtm” is the only valid option for molecular concentrations at this point).
For example, <output path=‘‘/data/output’’ interval=‘‘100’’ particle=‘‘pvtu’’ grid=‘‘
vtm’’/> sets the file output path to /data/output, the file output interval to once per

60

every 100 baseline time steps, the particle output format to the parallel VTK unstructured
grid format, and the molecular concentration output format to the VTK hierarchical box data
format. Setting “interval” to 0 turns off file output.

6.3.2 Optional Elements

• model: Set the model specific parameter string. Model routines can access the parameter
string using getModelParam() (Section 3.1.11). For example, <model param=‘‘test’’/>
sets the model specific parameter to “test”. The model specific parameter is set to “” by
default.

• verbosity: Set the standard output verbosity (0 to 5, 5 for the highest level of verbosity).
For example, <stdout verbosity=‘‘3’’/> sets the standard output verbosity level to 3. The
default verbosity level is 1.

• system: Set the number of node groups, number of nodes per node group, number of sock-
ets per node, threshold to perform load-balance, and the number of threads per MPI pro-
cess. Set the number of sockets to the number of sockets per shared memory node for
non-uniform memory access (NUMA) binding. Set the number of sockets per node to 1 to
disable NUMA binding.
For example, <system num node groups=‘‘1’’ num nodes per group=‘‘1’’ num socket
s per node=‘‘1’’ max load imbalance=‘‘1.05’’ num threads=‘‘8’’/> sets the number of
node groups, the number of nodes per group, and the number of sockets per node to 1, sets
Biocellion to perform load balancing (in the designated interval set in the system configu-
ration file, see the explanation about the interval element in this section) if the MPI process
with the highest load has more than 1.05 times load over the average, and sets the num-
ber of threads per MPI process to 8. The default number of node groups is 1. The default
value for the number of nodes per node group is equal to the number of MPI processes in
the MPI communicator. The default value for the number of sockets per node is 1 (disable
NUMA binding). The default threshold for load-balancing is 1.2 and the default number of
threads per MPI process is the number of cores (or hardware threads in a system with hard-
ware multi-threading support) in the target system. Note that the number of node groups ×
the number of nodes per group × the number of sockets per node should coincide with the
number of MPI processes in the MPI communicator.

• super partition: Set the super partition size in the x, y, and z directions. This is relevant
when running Biocellion on a large cluster with a large number of nodes and hierarchical
interconnection network. Biocellion allows users to group closely located nodes. Multiple
partitions in a single super partition is processed by the MPI processes in a single node group,
and this reduces communication between distant nodes and improves the performance. The
sizes of a super partition in the x, y, and z directions should be a positive integer multiple of
the partition size. Note that the number of super partitions in the simulation domain should
be equal to or larger than the number of node groups in the target system to avoid idling
node groups—if the amount of computing in each super partition varies significantly, more
super partitions are necessary to load-balance. <super partition x=‘‘128’’ y=‘‘128’’ z=‘‘
128’’/> sets the super partition sizes in the x, y, and z directions to 128. The default super

61

partition size in the x, y, or z direction is the smallest positive integer multiple of the partition
size that is equal to or larger than the simulation domain size in the x, y, or z direction.

• interval: Set the intervals for summary output, load-balancing, AMR regridding, and check-
point data output. For example, <interval summary=‘‘1’’ load balance=‘‘100’’ regriddi
ng=‘‘100’’ checkpoint=‘‘600’’/> sets Biocellion to print the summary every baseline time
step, load balance once per every 100 baseline time steps, regrid AMR hierarchy once per
every 100 baseline time steps, and generate checkpoint data every 600 baseline time steps.
The load balancing interval should be a positive integer multiple of the regirdding interval.
Setting the interval to 0 turns off summary, load balancing, regridding, or checkpoint data
generation. Default values for summary output and checkpoint data generation are 0 and
load balancing and regirdding are 100.

• amr: Set the refinement ratio between two consecutive AMR levels, and the desired fill
ratio for AMR boxes. The fill ratio is the number of user tags in an AMR box divided by the
number of unit boxes in the AMR box. If fill ratio is high, Biocellion tends to create a large
number of tiny AMR boxes, which lowers the efficiency of computation. If fill ratio is set to
a low value, Biocellion tends to create fewer boxes, but a larger percentage of the simulation
domain is covered by fine grids. The default refinement ratio is 2, and the refinement ratio
should be either 2 or 4. The default fill ratio is 0.5 and 0.0≤ f ill ratio≤ 1.0.

6.4 Execution on Desktop PCs and Workstations

Biocellion usees Intel Thread Building Block (version 4.2 or later) for multi-threading, and users
need to set the LD LIBRARY PATH Linux environment variable to point the TBB library direc-
tory (in TBB 4.2, this is $TBB ROOT/lib/intel64/gcc4.1). Biocellion executables are
located under $BIOCELLION ROOT/framework/main. biocellion.DP.SPAGENT.D
EBUG is a Biocellion executable compiled with debugging support, and biocellion.DP.SPA
GENT.OPT is an executable that delivers high-performance (DP stands for double precision, use
the executables with SP instead of DP if single-precision floating point arithmetic is sufficient).
Users execute Biocellion by typing ./biocellion.DP.SPAGENT.OPT simulation -
configuration file.

6.5 Execution on Clusters

Use biocellion.DP.SPAGENT.MPI.OPT (or biocellion.DP.SPAGENT.MPI.DEBU
G for debugging support) to run on clusters with the Ethernet interconnect and MPICH2 (http:
//www.mpich.org/). For clusters with the InfiniBand Interconnect (or other proprietary in-
terconnects) or different flavors of MPI libraries, users need to recompile the Biocellion framework
using Global Arrays and MPI libraries configured for the target system. mpiexec -n numb
er of MPI processes --machinefile machine file name ./biocellion.DP
.SPAGNT.MPI.OPT simulation configuration file name launches multiple MPI
processes to run a large simulation using multiple nodes. Refer to MPI manuals for additional
details. To run Biocellion on a cluster with a job scheduler, refer to a job scheduler manual or
contact a system administrator.

62

6.6 Execution on Amazon EC2

Launch EC2 instances—we use either CC1 Cluster Compute (cc1.4xlarge) or CC2 Cluster Com-
pute (cc2.8xlarge)—using the Biocellion machine image (refer to the Biocellion homepage http:
//biocellion.org for the latest machine image name). Refer the Amazon EC2 homepage
(http://aws.amazon.com/ec2) for instructions to launch EC2 instances. Log-in to one
of the launched instances. Biocellion is pre-installed under /home/ec2-user. To run on a
single EC2 instance, refer to the instructions in Section 6.4—Intel TBB is pre-installed and the
LD LIBRARY PATH Linux environment variable is already set.

To run on multiple instances, update mpd.hosts file under /home/ec2-user to list the
launched EC2 instance addresses. Type mpdboot -n number of EC2 instances -f
mpd.hosts to launch an MPI daemon. Type mpiexec -n number of MPI processe
s ./biocellion.DP.SPAGNT.MPI.OPT simulation configuration file nam
e to execute Biocellion using multiple instances. Note that each instance has its own /home/e
c2-user directory. Updating a file under /home/ec2-user in one instance will not update
the file with the same name under /home/ec2-user of different instances. Create an Amazon
S3 storage to share files across multiple EC2 instances.

6.7 Debugging Support

Biocellion installation includes binaries with debugging support. Users can enable checks on
model routine outputs and input arguments to Biocellion support functions by enabling the check
flag on compile time as stated in Section 6.2.1.

Users can set Biocellion to monitor ordinary differential equation (ODE) and partial differential
equation (PDE) solver outputs to assure that output values are equal to or larger than the user
specified minimum valid value (Sections 2.4.4 and 2.4.9). If PDE solver output values contain
a value smaller than the specified minimum value, Biocellion prints the PDE parameters and the
molecular concentrations of the unit box with the erroneous value and the neighboring boxes in the
± x, y, and z directions at the beginning of the PDE time step along with the erroneous value after
the PDE time step which produced the erroneous value. Biocellion aborts after printing the error
message.

6.8 Visualization Using Paraview

We briefly summarize visualization instructions assuming Paraview 3.14.1. See the Paraview
homepage and manual for advanced visualization.

6.8.1 Visualizing Discrete Agents

1. Click the “File” menu and select the “Open” item.

2. Open a set of files in the parallel VTK unstructured grid format(.pvtu).

63

3. Click the “Properties” tab at the bottom left side and click the “Apply” icon.

4. Select the “Filters” menu, the “Alphabetical” sub-menu, and the “Glyph” item.

5. Select the “Properties” tab.

6. Set “Scalars” to radius, “Glyph Type” to Sphere, “Radius” to 1.0, “Scale Mode” to Scalar,
“Set Scale Factor” to 1.0, and “Maximum Number of Points” to a value larger than the
number of discrete agents.

7. Click “Apply.”

8. Click the “Display” tab.

9. Set “Color by” to color.

10. Click “Zoom To Data.” This maps discrete agents to a set of spheres. Using the “Mask
Points” filter instead of the “Glyph” filter maps a discrete agent to a point (instead of a
sphere)—this is a computationally less expensive option to visualize discrete agent data.

6.8.2 Visualizing Molecular Concentrations

1. Click the “File” menu and select the “Open” item.

2. Open a set of files in the VTK hierarchical box data files format (.vtm).

3. When a pop-up menu appears, select the VTK Hierarchical Box Data Files format.

4. Click the “Properties” tab at the bottom left side and click the “Apply” icon.

5. Select the “Filters” menu, the “Alphabetical” sub-menu, and the “Slice” item.

6. Select the “Property” tab and adjust the plane to slice, and click the “Apply” icon.

7. Select the “Display” tab.

8. Set “Color by” to phi.

9. Click “Zoom To Data.” This displays the molecular concentrations at the slice plane.

64

7.0 Tips and Caveats

• We strongly encourage Biocellion users to enable the checks on model routine outputs and
input arguments to Biocellion support routines (Section 6.2.1) if the simulation does not
work properly. This often guides users to find errors on their model routines.

• The relative and absolute error norm thresholds for multigrid iterations (Section 2.4.10) have
significant impact on the accuracy and speed of simulation. If the norm thresholds are too
large, users may see no change at all in molecular concentrations even though the source
terms in PDEs are set to non-zero values. Setting these values to unnecessarily small values
can significantly slow down the simulation on the other hand. Be cautious when setting
these parameters.

• Note that double (instead of REAL) is used in spAgentCRNODERHS()—this is mainly be-
cause the Intel ODE solver does not support single-precision arithmetic.

• Be cautious about setting Neumann boundary values when κ (see Sections 4.5.3 and 4.5.15)
is set to a value smaller than 1.0. Biocellion does not consider κ in setting boundary values
(κ is used only in computing diffusion flux). For example, users may expect there is no
net diffusion if the Neumann boundary value for a boundary unit box face is set to 0.0.
Biocellion sets the molecular concentration of the box outside the simulation domain to the
molecular concentration of the box inside the simulation domain if the Neumann boundary
value is 0.0—the gradient ignoring κ becomes 0.0. Biocellion assumes that κ outside the
simulation domain is 1.0 and if the κ value for the box inside the simulation value is smaller
than 1.0, φ0

κ0
− φ1

κ1
can have a non-zero value. Users may set the diffusion coefficient at the

boundary to 0.0 instead to apply the zero flux boundary condition.

65

8.0 C++ Basics Relevant to Biocellion

We provide several links for users who are new to C++.

• http://www.cplusplus.com/doc/tutorial/classes/ explains C++ class, class
object (or instance), and access specifiers (private and public).

• http://www.cplusplus.com/reference/vector/vector explains C++ stan-
dard template library (STL) vector.

• http://en.wikipedia.org/wiki/Class_variable explains static member vari-
ables and functions.

• http://en.wikipedia.org/wiki/C%2B%2B_template explains C++ template

• http://en.wikipedia.org/wiki/Reference_(C%2B%2B) explains the concept
of reference in C++.

67

9.0 Bibliography

Colella P, DT Graves, JN Johnson, HS Johansen, ND Keen, TJ Ligocki, DF Martin, PW Mc-
Corquodale, D Modiano, PO Schwartz, TD Sternberg, and BV Straalen. 2012. Chombo Software
Package for AMR Applications Design Document. Lawrence Berkeley National Laboratory.

Daly MJ. 2000. “Engineering radiation-resistant bacteria for environmental biotechnology.” Cur-
rent Opinion in Biotechnology 11(3):280–285.

Ha SJ, JM Galazka, SR Kim, JH Choi, X Yang, JH Seo, NL Glass, JHD Cate, , and YS Jin. 2011.
“Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermenta-
tion.” Proceedings of the National Academy of Sciences 77(16):5822–5825.

Hall-Stoodley L, JW Costerton, and P Stoodley. 2004. “Bacterial biofilms: from the Natural
environment to infectious diseases.” Nature Reviews Microbiology 2:95–108.

Intel Corporation. 2008. Intel Ordinary Differential Equation Solver Library Reference Manual.

Jiao Y and S Torquato. 2011. “Emergent Behaviors from a Cellular Automaton Model for
Invasive Tumor Growth in Heterogeneous Microenvironments.” PLoS Computational Biology
7(12):e1002314.

Kang S, S Kahan, and B Momeni. TBP. Methods in Molecular Biology, Ch. Simulating Microbial
Community Patterning using Biocellion. Springer.

Kim Y, MA Stolarska, and HG Othmer. 2007. “A hybrid model for tumor spheroid growth in
vitro I: theoretical development and early results.” Mathematical Models and Methods in Applied
Sciences 17(1):1773–1798.

Majors PD, JS McLean, and JC Scholten. 2008. “NMR bioreactor development for live in-situ
microbial functional analysis.” Journal of Magnetic Resonance 192(1):159–166.

Melnicki MR, GE Pinchuk, EA Hill, LA Kucek, SM Stolyar, JK Fredrickson, AE Konopka, and
AS Beliaev. 2013. “Feedback-controlled LED photobioreactor for photophysiological studies of
cyanobacteria.” Bioresource Technology 134:127–133.

Momeni B, KA Brileya, MW Fields, and W Shou. 2013. “Strong inter-population cooperation
leads to partner intermixing in microbial communities.” eLife p. 00230.

Newman TJ. 2005. “Modeling Multicellular Systems Using Subcellular Elements.” Mathemati-
cal Biosciences and Engineering 2(3):611–622.

Resat H, V Bailey, LA McCue, and A Konopka. 2011. “Modeling Microbial Dynamics in Het-
erogeneous Environments: Growth on Soil Carbon Sources.” Microbial Ecology.

Rubinstein MR, X Wang, W Liu, Y Hao, G Cai, and YW Han. 2013. “Fusobacterium nucleatum
Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/-Catenin Signaling via its FadA
Adhesin.” Cell Host & Microbe.

Sandersius SA, CJ Weijer, and TJ Newman. 2011. “Emergent cell and tissue dynamics from
subcellular modeling of active biomechanical processes.”

69

Singh JS, P Abhilash, H Singh, RP Singh, and D Singh. 2011. “Genetically engineered bacteria:
An emerging tool for environmental remediation and future research perspectives.” Gene 480(1–
2):1–9.

Stamatakos GS. 2010. Multiscale Cancer Modeling, Ch. In Silico Oncology Part I–Clinically
Oriented Cancer Multilevel Modeling Based on Discrete Event Simulation. CRC Press.

Strang G. 1968. “On the construction and comparison of difference schemes.” SIAM Journal on
Numerical Analysis 5(3):506–517.

Twizell EH, AB Gumel, and MA Arigu. 1996. “Second-order, L0-stable methods for the heat
equation with time-dependent boundary conditions.” Advances in Computational Mathematics
6:333–352.

Weinberg RA. 2007. The biology of cancer. Garland Science.

Xavier JB, C Picioreanu, and MCM van Loosdrecht. 2005. “A framework for multidimen-
sional modelling of activity and structure of multispecies biofilms.” Environmental Microbiology
7(8):1085–1103.

70

